Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Measurements Of Wind Turbine Wake Evolution And Trajectory During Morning Boundary Layer Transition And Under Wake Steering Conditions Via Unmanned Aerial Vehicles, Stewart Nelson Jan 2021

Measurements Of Wind Turbine Wake Evolution And Trajectory During Morning Boundary Layer Transition And Under Wake Steering Conditions Via Unmanned Aerial Vehicles, Stewart Nelson

Theses and Dissertations--Mechanical Engineering

In July of 2019, a flight campaign was conducted using semi-autonomous Unmanned Aerial Vehicles (UAVs) at the Port Alma Kruger Energy wind farm in Ontario, Canada, to study various aspects of wind turbine wake evolution. Horizontal transects across the wakes were measured using modified fixed-wing aircraft fitted with a five-hole probe to measure the wind velocity vector. Reference boundary layer conditions were measured by an octocopter with an assortment of mounted sensors flying vertical profiles upstream of the turbines. Three experiments were conducted during the campaign, which consisted of a study on wake behavior during the morning boundary layer transition, …


Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner Dec 2020

Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner

Doctoral Dissertations

Floating offshore wind turbines are an immature technology with relatively high costs and risk associated with deployment. Of the few floating wind turbine prototypes and demonstration projects deployed in real metocean conditions, all have used standard turbines design for onshore or offshore fixed bottom conditions. This neglects the unique unsteady aerodynamics brought on by floating support structure motion. While the floating platform has been designed and optimized for a given rotor, the global system is suboptimal due to the rotor operating in conditions outside of which it was design for. If the potential offered by floating wind turbines is to …


Design And Testing Of A Wind Energy Harnessing System For Forced Convective Drying Of Grain In Low Wind Speed, Warm And Humid Climates, Francis Akumabi Agbali Jan 2019

Design And Testing Of A Wind Energy Harnessing System For Forced Convective Drying Of Grain In Low Wind Speed, Warm And Humid Climates, Francis Akumabi Agbali

Theses and Dissertations--Biosystems and Agricultural Engineering

Forced convective drying using a wind turbine mechanically connected to a ventilation fan was hypothesized for low cost and rapid grain drying in developing countries. The idea was tested using an expandable wind turbine blade system with variable pitch, at low wind speeds in a wind tunnel. The design was based on empirical and theoretical models embedded in a graphical user interface (GUI) created to estimate airflow-power requirements for drying ear corn. Output airflow (0.0016 - 0.0052 m3kg-1s-1) increased within the study wind speed range (2.0 - 5.5 m/s). System efficiency peak (8.6%) was …


Design Of Selectively Compliant Morphing Wind Turbine Blade Section Using Bistable Laminate For Passive Load Alleviation, Abhishek Chopra, Dr. Andres Arrieta, Janav Udani, Jose Rivas Padilla Aug 2018

Design Of Selectively Compliant Morphing Wind Turbine Blade Section Using Bistable Laminate For Passive Load Alleviation, Abhishek Chopra, Dr. Andres Arrieta, Janav Udani, Jose Rivas Padilla

The Summer Undergraduate Research Fellowship (SURF) Symposium

The design of passively controlled compliant morphing structures for large scale wind turbine blades has been of interest due to the inherent advantages of lower mass and reduced complexity over their active counterparts. Previous studies have indicated that embedding a locally bi-stable element within the turbine blade section successfully allows for achieving passive load alleviation. The embedded bi-stable member switches from one stable state to another at a critical aerodynamic load. This local structural change results in a global shift in the aeroelastic response of the blade section. Building on these preliminary results, this research investigates a two- dimensional wind …


Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader Oct 2017

Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader

Masters Theses

Wind turbine efficiency typically focuses on the shape, orientation, or stiffness of the turbine blades. In this thesis, the focus is instead on using static fixed airfoils in proximity to the wind turbine to control the airflow coming out of the turbine. These control devices have three beneficial effects. (1) They gather air from “higher up” where the air is moving faster on average (and therefore has more kinetic energy in it). (2) They throw the used (and slowed down air) downwards. This means that any turbines in the wind farm behind the lead turbines do not get “stale” air. …


High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Oct 2011

High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

In this article we present a high-performance computing framework for advanced flow simulation and its application to wind energy based on the residual-based variational multiscale (RBVMS) method and isogeometric analysis. The RBVMS formulation and its suitability and accuracy for turbulent flow in a moving domain are presented. Particular emphasis is placed on the parallel implementation of the methodology and its scalability. Two challenging flow cases were considered: the turbulent Taylor–Couette flow and the NREL 5 MW offshore baseline wind turbine rotor at full scale. In both cases, flow quantities of interest from the simulation results compare favorably with the reference …