Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Investigation Of A Novel Turbulence Model And Using Leading-Edge Slots For Improving The Aerodynamic Performance Of Airfoils And Wind Turbines, Saman Beyhaghi May 2017

Investigation Of A Novel Turbulence Model And Using Leading-Edge Slots For Improving The Aerodynamic Performance Of Airfoils And Wind Turbines, Saman Beyhaghi

Theses and Dissertations

Because of the problems associated with increase of greenhouse gases, as well as the limited supplies of fossil fuels, the transition to alternate, clean, renewable sources of energy is inevitable. Renewable sources of energy can be used to decrease our need for fossil fuels, thus reducing impact to humans, other species and their habitats. The wind is one of the cleanest forms of energy, and it can be an excellent candidate for producing electrical energy in a more sustainable manner. Vertical- and Horizontal-Axis Wind Turbines (VAWT and HAWT) are two common devices used for harvesting electrical energy from the wind. …


Optimization Of A Low Reynold's Number 2-D Inflatable Airfoil Section, Todd A. Johansen Dec 2011

Optimization Of A Low Reynold's Number 2-D Inflatable Airfoil Section, Todd A. Johansen

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A stand-alone genetic algorithm (GA) and an surrogate-based optimization (SBO) combined with a GA were compared for accuracy and performance. Comparisons took place using the Ackley Function and Rastrigin's Function, two functions with multiple local maxima and minima that could cause problems for more traditional optimization methods, such as a gradient-based method. The GA and SBO with GA were applied to the functions through a fortran interface and it was found that the SBO could use the same number of function evaluations as the GA and achieve at least 5 orders of magnitude greater accuracy through the use of surrogate …


Solid State Aircraft Concept Overview, M. Shahinpoor, P. Jenkins, C. Smith, Kakkattukuzhy M. Isaac, T. Dalbello, Anthony Colozza Jan 2004

Solid State Aircraft Concept Overview, M. Shahinpoor, P. Jenkins, C. Smith, Kakkattukuzhy M. Isaac, T. Dalbello, Anthony Colozza

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Due to recent advances in polymers, photovoltaics, and batteries a unique type of aircraft may be feasible. This is a "solid-state" aircraft, with no conventional mechanical moving parts. Airfoil, propulsion, energy production, energy storage and control are combined in an integrated structure. The key material of this concept is an ionic polymeric-metal composite (IPMC) that provides source of control and propulsion. This material has the unique capability of deforming in an electric field and returning to its original shape when the field is removed. Combining the IPMC with thin-film batteries and thin-film photovoltaics provides both energy source and storage in …


Dynamic Unstructured Method For Prescribed And Aerodynamically Determined Relative Moving Boundary Problems, Kamakhya Prasad Singh Jul 1995

Dynamic Unstructured Method For Prescribed And Aerodynamically Determined Relative Moving Boundary Problems, Kamakhya Prasad Singh

Mechanical & Aerospace Engineering Theses & Dissertations

A new methodology is developed to simulate unsteady flows about prescribed and aerodynamically determined moving boundary problems. The method couples the fluid dynamics and rigid-body dynamics equations to capture the time-dependent interference between stationary and moving boundaries. The unsteady, compressible, inviscid (Euler) equations are solved on dynamic, unstructured grids by an explicit, finite-volume, upwind method. For efficiency, the grid adaptation is performed within a window around the moving object. The Eulerian equations of the rigid-body dynamics are solved by a Runge-Kutta method in a non-inertial frame of reference. The two-dimensional flow solver is validated by computing the flow past a …


Aerodynamic Design Optimization With Consistently Discrete Sensitivity Derivatives Via The Incremental Iterative Method, Vamshi M. Korivi Apr 1995

Aerodynamic Design Optimization With Consistently Discrete Sensitivity Derivatives Via The Incremental Iterative Method, Vamshi M. Korivi

Mechanical & Aerospace Engineering Theses & Dissertations

In this study which involves advanced fluid-flow codes, an incremental iterative formulation (also known as the "delta" or "correction" form), together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently …