Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Numerical Analysis Of Two And Three Dimensional Recessed Flame Holders For Scramjet Applications, Douglas L. Davis Sep 1996

Numerical Analysis Of Two And Three Dimensional Recessed Flame Holders For Scramjet Applications, Douglas L. Davis

Theses and Dissertations

This study investigated the flame holding properties of recessed cavities in supersonic flow using numerical analysis techniques. A simplified analytical model indicated that an important property for flame holding was the lower residence time. Several chemical kinetic rate models for hydrogen and hydrocarbon combustion were compared. The perfectly stirred reactor model also indicated that trace species diffusion should increase flame spreading rate, and that heat loss reduces flame holding limits. After nonreacting calibration, two-dimensional simulations confirmed the perfectly stirred reactor results for blowout limits. Also, the effect of trace species diffusion on flame spreading was shown to be negligible, and …


Numerical Prediction Of Turbulent Diffusion Flames Formed By Cylindrical Tube Injector, Ali S. Kheireddine Jul 1996

Numerical Prediction Of Turbulent Diffusion Flames Formed By Cylindrical Tube Injector, Ali S. Kheireddine

Mechanical & Aerospace Engineering Theses & Dissertations

This work summarizes numerical results for a diffusion flame formed from a cylindrical tube fuel injector, issuing gaseous fuel jet vertically in a quiescent atmosphere. Both pure fuels as well as fuel mixtures are examined. The primary objective is to predict the flame base height as a function of the jet velocity. A finite volume scheme is used to discretize the time-averaged Navier-Stokes equations for the reacting flow, resulting from the turbulent fuel jet motion. The turbulent stresses, and heat and mass fluxes are computed from the Reynolds stress turbulence model. A chemical kinetics model involving a two-step chemical reaction …


A Progressive Damage Methodology For Residual Strength Predictions Of Center-Crack Tension Composite Panels, Timothy William Coats Jul 1996

A Progressive Damage Methodology For Residual Strength Predictions Of Center-Crack Tension Composite Panels, Timothy William Coats

Mechanical & Aerospace Engineering Theses & Dissertations

An investigation of translaminate fracture and a progressive damage methodology was conducted to evaluate and develop residual strength prediction capability for laminated composites with through penetration notches. This is relevant to the damage tolerance of an aircraft fuselage that might suffer an in-flight accident such as an uncontained engine failure. An experimental characterization of several composite materials systems revealed an R-curve type of behavior. Fractographic examinations led to the postulate that this crack growth resistance could be due to fiber bridging, defined here as fractured fibers of one ply bridged by intact fibers of an adjacent ply.

The progressive damage …


An Investigation Of The Characteristics Of Regenerative Heat Exchangers, Timothy J. Murphy Jun 1996

An Investigation Of The Characteristics Of Regenerative Heat Exchangers, Timothy J. Murphy

Theses and Dissertations

The objective of the current research was to investigate the effects of reducing screen thickness on the volume and compactness factor of stacked, wire-screen regenerators. An improved transient step-change method was devised which integrated experimental data with a numerical model of the flow to determine the heat transfer coefficient and friction factor. The improvements to the approach are: (1) the measured inlet temperature trace is used, (2) the heat transfer coefficient is based on a parameter called the sponge effect delay time, and (3) the important effect of the tube surrounding the matrix is included in the numerical model. The …


Optimization Of Torquer Coil Design For Use With The Small Satellite Attitude Control Simulator, David Deloyd Anderson May 1996

Optimization Of Torquer Coil Design For Use With The Small Satellite Attitude Control Simulator, David Deloyd Anderson

Undergraduate Honors Capstone Projects

This paper presents a procedure used to optimize the performance of a ferromagnetic core magnetic torquer coil design for use on the Space Dynamics Laboratory (Logan, UT) Small Satellite Attitude Control Simulator. The items of optimization include the primary goal of maximizing the coil 's magnetic moment while reducing power consumption and system mass within given power, mass, and dimensional constraints. The optimization process makes use of several simple equations to determine a few starting points for design, after which an iterative approach based on experimentation is used to produce the final design. It is found that optimal magnetic moment …


Unsteady, Transonic Flow Around Delta Wings Undergoing Coupled And Natural Modes Response: A Multidisciplinary Problem, Margaret Anne Menzies Apr 1996

Unsteady, Transonic Flow Around Delta Wings Undergoing Coupled And Natural Modes Response: A Multidisciplinary Problem, Margaret Anne Menzies

Mechanical & Aerospace Engineering Theses & Dissertations

The unsteady, three-dimensional Navier-Stokes equations coupled with the Euler equations of rigid-body dynamics are sequentially solved to simulate and analyze the aerodynamic response of a high angle of attack delta wing undergoing oscillatory motion. The governing equations of fluid flow and dynamics of the multidisciplinary problem are solved using a time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-state Runge-Kutta scheme, respectively. The primary model under consideration consists of a 65° swept, sharp-edged, cropped delta wing of zero thickness at 20° angle of attack. In a freestream …


Sensitivity Analysis And Optimization Of Aerodynamic Configurations With Blend Surfaces, Almuttil Mathew Thomas Apr 1996

Sensitivity Analysis And Optimization Of Aerodynamic Configurations With Blend Surfaces, Almuttil Mathew Thomas

Mechanical & Aerospace Engineering Theses & Dissertations

A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point …


Variational Methods In Sensitivity Analysis And Optimization For Aerodynamic Applications, Adem Ibrahim Hussen Apr 1996

Variational Methods In Sensitivity Analysis And Optimization For Aerodynamic Applications, Adem Ibrahim Hussen

Mechanical & Aerospace Engineering Theses & Dissertations

Variational methods (VM) sensitivity analysis, which is the continuous alternative to the discrete sensitivity analysis, is employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function.

The determination of the sensitivity derivatives of …


A Mixing Model To Improve The Pdf Simulation Of Turbulent Diffusion Flames, A. R. Masri, Shankar Subramaniam, S. B. Pope Jan 1996

A Mixing Model To Improve The Pdf Simulation Of Turbulent Diffusion Flames, A. R. Masri, Shankar Subramaniam, S. B. Pope

Shankar Subramaniam

A new mixing model based on Euclidean minimum spanning trees (EMST), which has been developed by Subramaniam and Pope, is used in the PDF simulation of pilot-stabilized turbulent non-premixed flames. a model equation is solved for the joint PDF of velocity composition and turbulence frequency using a particle mesh method.


A Dual Neural Network Architecture For Linear And Nonlinear Control Of Inverted Pendulum On A Cart, S. N. Balakrishnan, Victor Biega Jan 1996

A Dual Neural Network Architecture For Linear And Nonlinear Control Of Inverted Pendulum On A Cart, S. N. Balakrishnan, Victor Biega

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The use of a self-contained dual neural network architecture for the solution of nonlinear optimal control problems is investigated in this study. The network structure solves the dynamic programming equations in stages and at the convergence, one network provides the optimal control and the second network provides a fault tolerance to the control system. We detail the steps in design and solve a linearized and a nonlinear, unstable, four-dimensional inverted pendulum on a cart problem. Numerical results are presented and compared with linearized optimal control. Unlike the previously published neural network solutions, this methodology does not need any external training, …


Numerical Simulation Of Complex, Three-Dimensional, Turbulent-Free Jets, Robert V. Wilson Jan 1996

Numerical Simulation Of Complex, Three-Dimensional, Turbulent-Free Jets, Robert V. Wilson

Mechanical & Aerospace Engineering Theses & Dissertations

Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-section are simulated with a finite-difference numerical method. The full Navier-Stokes equations are solved at low Reynoids numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporal discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible …


The Modeling Of Structural-Acoustic Interaction Using Coupled Fe/Be Method And Control Of Interior Acoustic Pressure Using Piezoelectric Actuators, Yucheng Shi Jan 1996

The Modeling Of Structural-Acoustic Interaction Using Coupled Fe/Be Method And Control Of Interior Acoustic Pressure Using Piezoelectric Actuators, Yucheng Shi

Mechanical & Aerospace Engineering Theses & Dissertations

A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural--acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the …