Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Mechanical Engineering

The Use Of Additive Manufacturing For Cubesat Design And Testing, Jeremy Straub, Ronald Marsh, Scott Kerlin Apr 2015

The Use Of Additive Manufacturing For Cubesat Design And Testing, Jeremy Straub, Ronald Marsh, Scott Kerlin

Jeremy Straub

In developing a small spacecraft, the integration of numerous systems in a small area is a key challenge. It is easy to overlook how various component parts will integrate or have multiple sub-groups utilize un-filled space without realizing that they are creating a resource conflict. Additionally, the manufacturability of the final design is a key consideration. For all of these reasons, developing low-cost and incremental prototypes is a engineering ‘best practice’ for small spacecraft development.


Mechanical Design Of A Low-Cost Deployable Solar Panel Array For A 1-U Cubesat, Thomas Mcguire, Skye Leake, Michael Parsons, Michael Hirsch, Benjamin Kading, Jeremy Straub, David Whalen Mar 2015

Mechanical Design Of A Low-Cost Deployable Solar Panel Array For A 1-U Cubesat, Thomas Mcguire, Skye Leake, Michael Parsons, Michael Hirsch, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

CubeSats are small spacecraft with a nominal size of 10 cm x 10 cm x 10 cm and a mass of 1.33 kg (though some launch providers are now supporting expanded mass levels). While the CubeSat form factor has reduced the time and cost of spacecraft development, the required resources are still beyond the grasp of many colleges and universities. The Open Prototype for Educational Nanosats (OPEN) concept aims to solve this problem. OPEN is an inexpensive modular CubeSat that can be produced with a parts budget of less than $5,000. The OpenOrbiter program is working to develop this set …


Open Prototype For Educational Nanosats Cubesat Structural Design, Benjamin Kading, Jeremy Straub, Ronald Marsh Mar 2015

Open Prototype For Educational Nanosats Cubesat Structural Design, Benjamin Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

CubeSats are a class of small satellites that have recently gained significant interest and are being developed and used for engineering test missions, bona fide research and various other applications. A 1-U CubeSat (the original form factor) has nominal dimensions of 10 cm x 10 cm x 10 cm and a mass of no more than 1.33 kg (however, some integrators are now consistently allowing higher mass levels). Due to their small size and the demonstrated ability to successfully use consumer-grade electronics in low-Earth orbit, CubeSats cost significantly less than larger sized satellites. These reduced costs, however, are still beyond …


Design And Development Of A Payload Area Sub-Structure For A 1-U Cubesat, Tristan Plante, Jordan Forbord, Alexander Holland, Landon Klein, Benjamin Kading, Jeremy Straub, Ronald Marsh Mar 2015

Design And Development Of A Payload Area Sub-Structure For A 1-U Cubesat, Tristan Plante, Jordan Forbord, Alexander Holland, Landon Klein, Benjamin Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

Advancements in the miniaturization of electronics and other factors have allowed CubeSats, small satellites that can be created at a much lower cost than a large satellite, to perform numerous useful tasks. CubeSats, which are nominally 10 cm x 10 cm x 10 cm with a mass of less than 1.33 kg, are also developed in academic institutions to aid student learning; however, the development and launch of CubeSats can be expensive. Because of this, the Open Prototype for Educational NanoSats (OPEN) aims to make CubeSat development more affordable by developing a set of design documents as well as the …


Openorbiter Mechanical Design: A New Approach To The Design Of A 1-U Cubesat, Benjamin Kading, Jeremy Straub, Ronald Marsh Jan 2015

Openorbiter Mechanical Design: A New Approach To The Design Of A 1-U Cubesat, Benjamin Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative is working to create a set of designs and implementation instructions for a 1-U CubeSat, called the Open Prototype for Educational NanoSats. These designs target a total parts cost of below USD $5,000. This design will be made publically available to facilitate its use by others, with or without modification. A ‘side slotted’ CubeSat design (where main circuit boards are placed in slots between the rails on the outside) has been developed for OpenOrbiter. This paper discusses the design choices that were made during the mechanical structure development of the OpenOrbiter CubeSat design, required …


Mechanical Design And Analysis Of A 1-U Cubesat, Ben Kading, Jeremy Straub, Ronald Marsh Apr 2014

Mechanical Design And Analysis Of A 1-U Cubesat, Ben Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Spacecraft De-velopment Initiative seeks to create a low-cost, easy-to-assemble CubeSat1 design that can be produced with a parts budget of under USD$5,0002. In [1], an initial design was presented; this design was enhanced in [3] and has been revised further. The current design, which has switched focus from defining specifications, requirements and constraints to identifying real parts which meet these previously defined constraints, is presented herein.


Work To-Date On Mechanical Design For An Open Hardware Spacecraft, Jacob Brewer, Brian Badders, Josh Berk, Jeremy Straub Apr 2013

Work To-Date On Mechanical Design For An Open Hardware Spacecraft, Jacob Brewer, Brian Badders, Josh Berk, Jeremy Straub

Jeremy Straub

The OpenOrbiter CubeSat seeks to demonstrate the designs created for the Open Prototype for Educational NanoSats (OPEN) initiative. OPEN provides a set of freely available design documents that can be utilized by educational and research teams worldwide. The OPEN structure implements a different strategy than most other CubeSats, allowing it to maximize the use of the overhang space (an area of space between the supports for the frame rails and the wall in the PPOD deployer). It also provides a location for payload components or a propellant tank at the spacecraft’s center of mass. This design is enabled by a …


Active Tuned Mass Dampers For Control Of In-Plane Vibrations Of Wind Turbine Blades, Breiffni Fitzgerald Jan 2013

Active Tuned Mass Dampers For Control Of In-Plane Vibrations Of Wind Turbine Blades, Breiffni Fitzgerald

Breiffni Fitzgerald

This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping matrices. The aim of this paper is to determine whether ATMDs could be used to reduce in-plane blade vibrations in wind turbines with better performance than compared with their passive counterparts. A Euler–Lagrangian wind turbine mathematical model based on energy formulation was developed for this purpose, which considers the structural dynamics of the system and the interaction between in-plane …


State Of The Art / Novel Rotary-Turbo-Inflow Tech / Featured Development - Gearturbine Project - Atypical Motor Engine Type, Carlos Barrera Jan 2012

State Of The Art / Novel Rotary-Turbo-Inflow Tech / Featured Development - Gearturbine Project - Atypical Motor Engine Type, Carlos Barrera

Carlos Barrera

GEARTURBINE PROJECT Atypical InFlow Thermodynamic Technology Proposal Submission Novel Fueled Motor Engine Type

*State of the art Innovative concept Top system Higher efficient percent. Have similar system of the Aeolipile Heron Steam device from Alexandria 10-70 AD. -New Form-Function Motor-Engine Device. Next Step, Epic Design Change, Broken-Seal Revelation. -Desirable Power-Plant Innovation.

YouTube; * Atypical New • GEARTURBINE / Retrodynamic = DextroRPM VS LevoInFlow + Ying Yang Thrust Way Type - Non Waste Looses

-This innovative concept consists of hull and core where are held all 8 bteps of the work-flow which make the concept functional. The core has several gears …


Mechanical Team, Brian Badders, Tyler Hill, Alec Redmann, Erik Peterman, Wataru Suzuki, Josh Berk, Jeremy Straub Jan 2012

Mechanical Team, Brian Badders, Tyler Hill, Alec Redmann, Erik Peterman, Wataru Suzuki, Josh Berk, Jeremy Straub

Jeremy Straub

No abstract provided.


Development Of A Novel Methodology For Indoor Emission Source Identification, Kwanghoon Han Mar 2011

Development Of A Novel Methodology For Indoor Emission Source Identification, Kwanghoon Han

Kwanghoon Han

The objective of this study was to develop and evaluate a methodology to identify individual sources of emissions based on the measurements of mixed air samples and the emission signatures of individual materials previously determined by Proton Transfer Reaction-Mass Spectrometry (PTR-MS), an on-line analytical device. The methodology based on signal processing principles was developed by employing the method of multiple regression least squares (MRLS) and a normalization technique. Samples of nine typical building materials were tested individually and in combination, including carpet, ceiling material, gypsum board, linoleum, two paints, polyolefine, PVC and wood. Volatile Organic Compound (VOC) emissions from each …


Determination Of Material Emission Signatures By Ptr-Ms And Their Correlations With Odor Assessments By Human Subjects, Kwanghoon Han Apr 2010

Determination Of Material Emission Signatures By Ptr-Ms And Their Correlations With Odor Assessments By Human Subjects, Kwanghoon Han

Kwanghoon Han

The objectives of this study were to determine volatile organic compound (VOC) emission signatures of nine typical building materials by using proton transfer reaction-mass spectrometry (PTR-MS) and to explore the correlation between the PTR-MS measurements and the measurements of acceptability by human subjects. VOC emissions from each material were measured in a 50-l small-scale chamber. Chamber air was sampled by PTR-MS to determine emission signatures. Sorbent tube sampling and TD-GC/MS analysis were also performed to identify the major VOCs emitted and to compare the resulting data with the PTR-MS emission signatures. The data on the acceptability of air quality assessed …


Design And Cfd Analysis Of Mass Transfer And Shear Stresses Distributions In Airlift Reactor, Rachid Bannari, Brahim Selma, Abdelfettah Bannari, Pierre Proulx Jun 2009

Design And Cfd Analysis Of Mass Transfer And Shear Stresses Distributions In Airlift Reactor, Rachid Bannari, Brahim Selma, Abdelfettah Bannari, Pierre Proulx

Abdelfettah Bannari Ph.D

The design, scale-up and performance evaluation of biological reactors require accurate information about the gas-liquid flow dynamics. In this study, we use CFD techniques to investigate important parameters of the multiphase flow dynamics on an initial airlift bioreactor in order to improve its design. Such parameters are distributions of shear stresses and mass transfer. Our initial proposed design of the airlift bioreactor was used for biomass growing. Specifically to produce cellulase enzyme using the fungus Trichoderma Reesei. However, the morphology of the microorganism obtained in this bioreactor was not appropriated to produce cellulase. Since the microorganism morphology presented a small …


A Coupled Cfd-Kinetic Models For Cellulase Production In Airlift Reactor, Rachid Bannari, Abdelfettah Bannari, Brahim Selma, Pierre Proulx Apr 2009

A Coupled Cfd-Kinetic Models For Cellulase Production In Airlift Reactor, Rachid Bannari, Abdelfettah Bannari, Brahim Selma, Pierre Proulx

Abdelfettah Bannari Ph.D

Cellulase production provides a catalyst for cellulose hydrolysis to glucose, to be used for eventual production of ethanol. The transport of reactants may influence the reaction rate remarkably, for the biological reaction, especially the enzymatic reaction, The transport behavior of the components in a biological system should be considered in the model. In this work, we propose a coupled model between hydrodynamics (twoPhaseEuler- Foam) and a kinetic model for batch and fed-batch cellulase enzyme production by T. reesei from cellulose/lactose substrate which is constructed from literature concepts and laboratory data. Good agreement is obtained between the results and experimental data.