Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Examination Of Installation Effects On Multi-Jet Meter Performance, Domenic Quiquero Aug 2022

Examination Of Installation Effects On Multi-Jet Meter Performance, Domenic Quiquero

Undergraduate Student Research Internships Conference

Alongside Mitchell Boody and Dr. Eric Savoury's supervision, the effect of additional internal friction of multi-jet flow meters caused by various orientations was experimentally analyzed. Multi-jet flow meters are commonly used in multi-unit residential buildings, thus by understanding the effects of the corresponding orientational loss, our industry partners can better assess water cost. This study coincides with Mitchell Boody's work using simulations to demonstrate the impact of frictional loss in multi-jet flow meters and building upon the work of Paulo Barros Rodrigues with other orientations.


A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou Dec 2019

A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou

Electronic Thesis and Dissertation Repository

Tremor, one of the most disabling symptoms of Parkinson's disease (PD), significantly affects the quality of life of the individuals who suffer from it. These people live with difficulties with fine motor tasks, such as eating and writing, and suffer from social embarrassment. Traditional medicines are often ineffective, and surgery is highly invasive and risky. The emergence of wearable technology facilitates an externally worn mechatronic tremor suppression device as a potential alternative approach for tremor management. However, no device has been developed for the suppression of finger tremor that has been validated on a human.

It has been reported in …


Airborne Topological Acoustics, Xingxing Liu Oct 2019

Airborne Topological Acoustics, Xingxing Liu

Electronic Thesis and Dissertation Repository

Advances in topological acoustics are leading to potential development for noise attenuation, ultrasonic imaging, sound manipulation, and information delivering, etc. Recently, ideas and methodologies from condensed-matter physics, such as the quantum Hall effect (QHE), the quantum spin Hall effect (QSHE), and the quantum valley Hall effect (QVHE), combined with configurations of sonic crystals and metamaterials, have been investigated in manipulating acoustic transmissions in the form of one-way edge modes and defect-immune protected acoustics. However, many related studies are still in their infancy and mostly rely on bulky, noisy, overly complicated, untunable and narrow-band-effective facilities, and so it is highly desirable …


Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash Jan 2019

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash

Electronic Thesis and Dissertation Repository

The aim of the present research is to understand the bouncing dynamic behavior of NEM/MEM switches in order to improve the switch performance and reliability. It is well known that the bouncing can dramatically degrade the switch performance and life; hence, in the present study, bouncing dynamics of a cantilever-based NME/MEM switch has been studied in detail. To this end, a model of a MEM switch that incorporates electrostatic force, squeeze film air damping force as well as asperity-based contact force has been proposed for an electrostatically actuated switch. An actuation force due to piezoelectric effects is further included in …


Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane Nov 2017

Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane

Electronic Thesis and Dissertation Repository

This thesis presents a general framework for hybrid attitude control and estimation design on the Special Orthogonal group SO(3). First, the attitude stabilization problem on SO(3) is considered. It is shown that, using a min-switch hybrid control strategy designed from a family of potential functions on SO(3), global exponential stabilization on SO(3) can be achieved when this family of potential functions satisfies certain properties. Then, a systematic methodology to construct these potential functions is developed. The proposed hybrid control technique is applied to the attitude tracking problem for rigid body systems. A smoothing mechanism is proposed to filter out the …


P26. Global Exponential Stabilization On So(3), Soulaimane Berkane Mar 2017

P26. Global Exponential Stabilization On So(3), Soulaimane Berkane

Western Research Forum

Global Exponential Stabilization on SO(3)


Uncertainty Quantification For A Class Of Mems-Based Vibratory Angular Rate Sensors, Nujhat Abedin Aug 2014

Uncertainty Quantification For A Class Of Mems-Based Vibratory Angular Rate Sensors, Nujhat Abedin

Electronic Thesis and Dissertation Repository

Numerical schemes that are suitable for predicting response statistics of mass-spring and ring gyroscopes are developed when this class of vibratory gyroscopes are subjected to certain system parameters as well as environment uncertainties. The emphasis is placed on the steady-state part of the response since it is more critical to the operation of a gyroscope. A peak-picking approach which simulates the demodulation process which is used in practice is employed first before applying the Monte Carlo simulation method to predict the response statistics. A number of simulation trials to predict response statistics have been performed for mass-spring and ring-type gyroscopes …


Experimental Modal Analysis Of Micron-Scale Structures, Joel M. Book Jan 2012

Experimental Modal Analysis Of Micron-Scale Structures, Joel M. Book

Electronic Thesis and Dissertation Repository

Micron-scale structures, including but not limited to MEMS devices, are a class of mechanical systems with a wide range of real-world applications. One important type of dynamic properties are modal, or vibrational, characteristics, which can have great effects on performance, reliability, and useful life of a system. This makes the determination of these characteristics an important element in the design and testing of these systems. The research described in this thesis addresses important challenges in experimental modal characterization of micron-scale structures, including difficulties in: applying suitable known excitations; measuring small magnitude response motions; avoiding excessive mass loading; and dealing with …