Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Mechanical Engineering

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen Nov 2019

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen

Doctoral Dissertations

Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying biomechanics of human gait. Predictive simulation can be used for a variety of applications from designing assistive devices to testing theories of motor controls. However, one of the challenges in formulating the predictive dynamic optimization problem is that the cost function, which represents the underlying goal of the walking task (e.g., minimal energy consumption) is generally unknown and is assumed a priori. While different studies used different cost functions, the qualities of the gaits with those cost functions were often not provided. Therefore, this dissertation …


Structural Control Of Offshore Wind Turbines Using Passive And Semi-Active Control, Semyung Park Oct 2019

Structural Control Of Offshore Wind Turbines Using Passive And Semi-Active Control, Semyung Park

Doctoral Dissertations

Offshore wind energy has the potential to generate substantial electricity production compared to onshore locations, due to the high-quality wind resource. Offshore wind turbines must endure severe offshore environmental conditions and be cost effective, in order to be sustainable. As a result, load mitigation becomes crucial in successfully enabling deployment of offshore wind turbines. A direct approach to reduce loads in offshore wind turbines is the application of structural control techniques. So far, the application of structural control techniques to offshore wind turbines has shown to be effective in reducing fatigue and extreme loads of turbine structures. However, the majority …


Calculation Of Scalar Isosurface Area And Applications, Kedar Prashant Shete Oct 2019

Calculation Of Scalar Isosurface Area And Applications, Kedar Prashant Shete

Masters Theses

The problem of calculating iso-surface statistics in turbulent flows is interesting for a number of reasons, some of them being combustion modeling, entrainment through turbulent/non-turbulent interfaces, calculating mass flux through iso-scalar surfaces and mapping of scalar fields. A fundamental effect of fuid turbulence is to wrinkle scalar iso-surfaces. A review of the literature shows that iso-surface calculations have primarily been done with geometric methods, which have challenges when used to calculate surfaces that have high complexity, such as in turbulent flows. In this thesis, we propose an alternative integral method and test it against analytical solutions. We present a parallelized …


Flow-Induced Oscillations In Floating Offshore Wind Turbines, Daniel Carlson Jul 2019

Flow-Induced Oscillations In Floating Offshore Wind Turbines, Daniel Carlson

Doctoral Dissertations

The goal of this thesis is to experimentally study the structural dynamics, wake interaction, and fluid forces on the multiple-degree of freedom systems typical of floating wind turbines. Vortex--surface alignment about flexibly-mounted prisms is studied to investigate the response of barges and semi-submersible hulls, and new results pertaining to the galloping response kink for a prism with dual inline--crossflow resonance is presented. Flow--induced oscillations of a spar model free to rotate in 3D space is replicated and observed as 2D figure--eight orbits about the center of the spar. Methods to suppress the flow from exciting the spar are proposed. The …


A Numerical Flutter Predictor For 3d Airfoils Using The Onera Dynamic Stall Model, Pieter Boersma Oct 2018

A Numerical Flutter Predictor For 3d Airfoils Using The Onera Dynamic Stall Model, Pieter Boersma

Masters Theses

To be able to harness more power from the wind, wind turbine blades are getting longer. As they get longer, they get more flexible. This creates issues that have until recently not been of concern. Long flexible wind turbine blades can lose their stability to flow induced instabilities such as coupled-mode flutter. This type of flutter occurs when increasing wind speed causes a coupling of a bending and a torsional mode, which create limit cycle oscillations that can lead to blade failure. To be able to make the design of larger blades possible, it is important to be able to …


Streamwise Flow-Induced Oscillations Of Bluff Bodies - The Influence Of Symmetry Breaking, Tyler Gurian Jul 2018

Streamwise Flow-Induced Oscillations Of Bluff Bodies - The Influence Of Symmetry Breaking, Tyler Gurian

Masters Theses

The influence of symmetry breaking on the flow induced oscillations of bluff bodies in the steamwise direction is studied. First, a series of experiments is conducted on a one-degree-of-freedom circular cylinder allowed to exhibit pure translational motion in the streamwise direction over a range of reduced velocities, 1.4 < U* < 4.4, corresponding to a Reynolds number range of 970 < Re < 3370. Two distinct regions of displacements were observed in reduced velocity ranges of 1.6 < U* < 2.5 and 2.75 < U* < 3.85. Measured force coefficients in the drag and lift direction were examined, along with the wake visualization, through the range of reduced velocities, to infer the resulting wake modes. A new Alternating Symmetric (AS) mode was found. This transition from symmetric to AS shedding occurred near the end of the first region of response. Similar tests were run with a square prism in the parameter space of 2.4 < U* < 5.8 and 757 < Re < 1900 over angles of incidence of 0° ≤ α ≤ 45°. A distinct region of lock-in is observed for α = 0°, 2.5°, 5°, 7.5° over 3.2 < U* < 5.4 for α = 0°, and decreasing with increasing α. The wake structures were found to be roughly symmetric for α = 0°, but transitioned towards asymmetry …


Evaluation Of Impedance Control On A Powered Hip Exoskeleton, Punith Condoor Oct 2017

Evaluation Of Impedance Control On A Powered Hip Exoskeleton, Punith Condoor

Masters Theses

This thesis presents an impedance control strategy for a novel powered hip exoskeleton designed to provide partial assistance and leverage the dynamics of human gait. The control strategy is based on impedance control and provides the user assistance as needed which is determined by the user’s interaction with the exoskeleton. A series elastic element is used to drive the exoskeleton and measures the interaction torque between the user and the device. The device operates in two modes. Free mode is a low impedance state that attempts to provide no assistance. Assist mode increases the gains of the controller to provide …


Theoretical Modeling, Experimental Observation, And Reliability Analysis Of Flow-Induced Oscillations In Offshore Wind Turbine Blades, Pariya Pourazarm Nov 2016

Theoretical Modeling, Experimental Observation, And Reliability Analysis Of Flow-Induced Oscillations In Offshore Wind Turbine Blades, Pariya Pourazarm

Doctoral Dissertations

Offshore wind energy has been growing rapidly due to its capacity for utilizing much larger turbines and thus higher power generation compared to onshore. With the increasing size of offshore wind turbine rotors, the design criteria used for the blades may also evolve. Increased flexibility in blades causes them to be more susceptible to experiencing flow-induced instability. One of the destructive aero-elastic instabilities that can occur in flexible structures subjected to aerodynamic loading is coupled-mode flutter. Coupled-mode flutter instability has not been a design driver in the current wind turbine blades, however, considering the industry tendency in utilizing longer and …


Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar Nov 2016

Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar

Doctoral Dissertations

As assistive, wearable robotic devices are being developed to physically assist their users, it has become crucial to develop safe, reliable methods to coordinate the device with the intentions and motions of the wearer. This dissertation investigates the recognition of user intent during flexion and extension of the human torso in the sagittal plane to be used for control of an assistive exoskeleton for the human torso. A multi-sensor intent recognition approach is developed that combines information from surface electromyogram (sEMG) signals from the user’s muscles and inertial sensors mounted on the user’s body. Intent recognition is implemented by following …


Automatic Development And Adaptation Of Concise Nonlinear Models For System Identification, William G. La Cava Nov 2016

Automatic Development And Adaptation Of Concise Nonlinear Models For System Identification, William G. La Cava

Doctoral Dissertations

Mathematical descriptions of natural and man-made processes are the bedrock of science, used by humans to understand, estimate, predict and control the natural and built world around them. The goal of system identification is to enable the inference of mathematical descriptions of the true behavior and dynamics of processes from their measured observations. The crux of this task is the identification of the dynamic model form (topology) in addition to its parameters. Model structures must be concise to offer insight to the user about the process in question. To that end, this dissertation proposes three methods to improve the ability …


Vortex-Induced Vibration Of Structures With Broken Symmetry, Banafsheh Seyedaghazadeh Aug 2015

Vortex-Induced Vibration Of Structures With Broken Symmetry, Banafsheh Seyedaghazadeh

Doctoral Dissertations

A bluff body, i.e., an object with a blunt cross-section immersed in cross-flow forms an unstable wake, resulting in the formation of large-scale vortical structures, which induce unsteady forces on the body. If the body is flexible or flexibly mounted, vortex-induced vibration (VIV) results, which can have significant implications for a number of physical systems, from aeolian harps to power transmission lines, towing cables, undersea pipelines, drilling risers and mooring lines used to stabilize offshore floating platforms. VIV has been a major subject of research in recent years. The majority of these studies have focused on symmetric systems in which …


Design Of A Passive Exoskeleton Spine, Haohan Zhang Nov 2014

Design Of A Passive Exoskeleton Spine, Haohan Zhang

Masters Theses

In this thesis, a passive exoskeleton spine was designed and evaluated by a series of biomechanics simulations. The design objectives were to reduce the human operator’s back muscle efforts and the intervertebral reaction torques during a full range sagittal plane spine flexion/extension. The biomechanics simulations were performed using the OpenSim modeling environment. To manipulate the simulations, a full body musculoskeletal model was created based on the OpenSim gait2354 and “lumbar spine” models. To support flexion and extension of the torso a “push-pull” strategy was proposed by applying external pushing and pulling forces on different locations on the torso. The external …


New Generator Control Algorithms For Smart-Bladed Wind Turbines To Improve Power Capture In Below Rated Conditions, Bryce B. Aquino Nov 2014

New Generator Control Algorithms For Smart-Bladed Wind Turbines To Improve Power Capture In Below Rated Conditions, Bryce B. Aquino

Masters Theses

With wind turbines growing in size, operation and maintenance has become a more important area of research with the goal of making wind energy more profitable. Wind turbine blades are subjected to intense fluctuating loads that can cause significant damage over time. The need for advanced methods of alleviating blade loads to extend the lifespan of wind turbines has become more important as worldwide initiatives have called for a push in renewable energy. An area of research whose goal is to reduce the fatigue damage is smart rotor control. Smart bladed wind turbines have the ability to sense aerodynamic loads …


Umass Amherst Green Building Guidelines 2013, Ludmilla Pavlova-Gillham, Ted Mendoza, Ezra Small, Patricia O'Flaherty, Nariman Mostafavi, Mohamed Farzinmoghadam, Somayeh Tabatabaee Pozveh Jan 2013

Umass Amherst Green Building Guidelines 2013, Ludmilla Pavlova-Gillham, Ted Mendoza, Ezra Small, Patricia O'Flaherty, Nariman Mostafavi, Mohamed Farzinmoghadam, Somayeh Tabatabaee Pozveh

Campus Planning Reports and Plans

Facilities & Campus Services, Sustainable UMass and Campus Planning support sustainability and energy conservation initiatives by providing in-house resources to campus staff as well as designers and contractors working with the University. The UMass Amherst Green Building Guidelines provide a framework for approaching new construction and major renovation projects at UMass Amherst that are undergoing LEED certification by focusing the conversation on green building aspects that are most important to the campus. They are intended to be the beginning of a dynamic conversation between designers, environmental consultants and constructors, university stakeholders, and users of new high performance buildings.


Activity Intent Recognition Of The Torso Based On Surface Electromyography And Inertial Measurement Units, Zhe Zhang Jan 2013

Activity Intent Recognition Of The Torso Based On Surface Electromyography And Inertial Measurement Units, Zhe Zhang

Masters Theses 1911 - February 2014

This thesis presents an activity mode intent recognition approach for safe, robust and reliable control of powered backbone exoskeleton. The thesis presents the background and a concept for a powered backbone exoskeleton that would work in parallel with a user. The necessary prerequisites for the thesis are presented, including the collection and processing of surface electromyography signals and inertial sensor data to recognize the user’s activity. The development of activity mode intent recognizer was described based on decision tree classification in order to leverage its computational efficiency. The intent recognizer is a high-level supervisory controller that belongs to a three-level …


Load Reduction Of Floating Wind Turbines Using Tuned Mass Dampers, Gordon M. Stewart Jan 2012

Load Reduction Of Floating Wind Turbines Using Tuned Mass Dampers, Gordon M. Stewart

Masters Theses 1911 - February 2014

Offshore wind turbines have the potential to be an important part of the United States' energy production profile in the coming years. In order to accomplish this wind integration, offshore wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. To capitalize on high speed and high quality winds over deep water, floating platforms for offshore wind turbines have been developed, but they suffer from greatly increased loading. One method to reduce loads in offshore wind turbines is the application of structural control techniques usually used in skyscrapers and bridges. Tuned …


Semi-Active Damping For An Intelligent Adaptive Ankle Prosthesis, Andrew K. Lapre Jan 2012

Semi-Active Damping For An Intelligent Adaptive Ankle Prosthesis, Andrew K. Lapre

Masters Theses 1911 - February 2014

Modern lower limb prostheses are devices that replace missing limbs, making it possible for lower limb amputees to walk again. Most commercially available prosthetic limbs lack intelligence and passive adaptive capabilities, and none available can adapt on a step by step basis. Often, amputees experience a loss of terrain adaptability as well as stability, leaving the amputee with a severely altered gait. This work is focused on the development of a semi-active damping system for use in intelligent terrain adaptive ankle prostheses. The system designed consists of an optimized hydraulic cylinder with an electronic servo valve which throttles the hydraulic …


Vibration Reduction Of Offshore Wind Turbines Using Tuned Liquid Column Dampers, Colin Roderick Jan 2012

Vibration Reduction Of Offshore Wind Turbines Using Tuned Liquid Column Dampers, Colin Roderick

Masters Theses 1911 - February 2014

Offshore wind turbines (OWTs) are becoming an accepted method for generating electricity. The environmental conditions of offshore locations often impose high wind and wave forces on OWTs making them susceptible to intense loading and undesirable vibrations. One method to reduce system vibrations is through the use of structural control devices typically utilized in civil structures. Tuned liquid column dampers (TLCDs) show great promise in the application to OWTs due to their high performance and low cost. This thesis examines the use of TLCDs in OWTs.

Equations of motion for limited degree-of-freedom TLCD-turbine models are presented. A baseline analysis of each …


Numerical Forcing Of Horizontally-Homogeneous Stratified Turbulence, Kaustubh J. Rao Jan 2011

Numerical Forcing Of Horizontally-Homogeneous Stratified Turbulence, Kaustubh J. Rao

Masters Theses 1911 - February 2014

It is often desirable to study simulated turbulent flows at steady state even if the flow has no inherent source of turbulence kinetic energy. Doing so requires a numerical forcing scheme and various methods have been studied extensively for turbulence that is isotropic and homogeneous in three dimensions. A review of these existing schemes is used to form a framework for more general forcing methods. In this framework, the problem of developing a forcing scheme in Fourier space is abstracted into the two problems of (1) prescribing the spectrum of the input power and (2) specifying a force that has …