Open Access. Powered by Scholars. Published by Universities.®

Structural Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 636

Full-Text Articles in Structural Materials

Quantifying Bonding Characteristics Between Uhpc And Normal-Strength Concrete For Bridge Deck Application, Sriram Aaleti, Sri Sritharan Jun 2019

Quantifying Bonding Characteristics Between Uhpc And Normal-Strength Concrete For Bridge Deck Application, Sriram Aaleti, Sri Sritharan

Civil, Construction and Environmental Engineering Publications

Ultrahigh performance concrete (UHPC) is an advanced cementitious material which has excellent mechanical and durability properties, making it appropriate for the rehabilitation of concrete structures. This paper investigates the usage of a thin layer of UHPC overlaying a normal strength concrete (NC) deck. The behavior of the interface connection will have a significant impact on the overall structural and durability performance of the UHPC-NC composite deck system. An integrated experimental and analytical study was conducted to understand the influence of several variables, such as normal concrete strength, interface roughness, and curing condition on the shear transfer behavior across the interface ...


Phase Transitions And Their Interaction With Dislocations In Silicon, Valery I. Levitas, Hao Chen, Liming Xiong Apr 2019

Phase Transitions And Their Interaction With Dislocations In Silicon, Valery I. Levitas, Hao Chen, Liming Xiong

Valery I. Levitas

In this paper, phase transformations (PTs) in silicon were investigated through molecular dynamics (MD) using Tersoff potential. In the first step, simulations of PTs in single crystal silicon under various stress-controlled loading were carried out. Results shows that all instability points under various stress states are described by criteria, which are linear in the space of normal stresses. There is a region in the stress space in which conditions for direct and reverse PTs coincide and a unique homogeneous phase transition (without nucleation) can be realized. Finally, phase transition in bi-crystalline silicon with a dislocation pileup along the grain boundary ...


Quantifying Bonding Characteristics Between Uhpc And Normal-Strength Concrete For Bridge Deck Application, Sriram Aaleti, Sri Sritharan Apr 2019

Quantifying Bonding Characteristics Between Uhpc And Normal-Strength Concrete For Bridge Deck Application, Sriram Aaleti, Sri Sritharan

Sri Sritharan

Ultrahigh performance concrete (UHPC) is an advanced cementitious material which has excellent mechanical and durability properties, making it appropriate for the rehabilitation of concrete structures. This paper investigates the usage of a thin layer of UHPC overlaying a normal strength concrete (NC) deck. The behavior of the interface connection will have a significant impact on the overall structural and durability performance of the UHPC-NC composite deck system. An integrated experimental and analytical study was conducted to understand the influence of several variables, such as normal concrete strength, interface roughness, and curing condition on the shear transfer behavior across the interface ...


Soft-Matter Damage Detection Systems For Electronics And Structures, Michael D. Bartlett, Eric J. Markvicka, Ravi Tutika, Carmel Majidi Apr 2019

Soft-Matter Damage Detection Systems For Electronics And Structures, Michael D. Bartlett, Eric J. Markvicka, Ravi Tutika, Carmel Majidi

Materials Science and Engineering Publications

Soft-matter technologies are essential for emerging applications in wearable computing, human-machine interaction, and soft robotics. However, as these technologies gain adoption in society and interact with unstructured environments, material and structure damage becomes inevitable. Here, we present a robotic material that mimics soft tissues found in biological systems to identify, compute, and respond to damage. This system is composed of liquid metal droplets dispersed in soft elastomers that rupture when damaged, creating electrically conductive pathways that are identified with a soft active-matrix grid. This presents new opportunities to autonomously identify damage, calculate severity, and respond to prevent failure within robotic ...


Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai Mar 2019

Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai

ASEE IL-IN Section Conference

Application of Computational Tools to Spaghetti-Based Truss Design

Statics and Strength of Materials are two foundational courses for Mechanical/Civil Engineering. In order to assist students in better understanding and applying concepts to a meaningful design task, SolidWorks and theoretical calculation were used for a spaghetti-bridge design contest with the constraints of given maximum weight and allowable support-material weight. As the first step of this iterative designing process, both extrude feature and structural member were introduced to model planar bridge trusses. Then SolidWorks’ Statics module was used to run FEA analysis of the structural performance in efforts to optimize the ...


Design Of A Carburizing Treatment Of Steel Base Gear In The Materials Science Course, Jiliang Li, Jin Xu, Nuri Zeytinoglu, Jinyuan Zhai Mar 2019

Design Of A Carburizing Treatment Of Steel Base Gear In The Materials Science Course, Jiliang Li, Jin Xu, Nuri Zeytinoglu, Jinyuan Zhai

ASEE IL-IN Section Conference

Diffusion PDE Application to Carburizing Treatment of Steel Base Gear

An introductory materials-science course is required in the mechanical engineering curriculum of many universities. This article describes an example effort to incorporate programming, diffusion transfer, heat treatment process and mechanical-property determination as an integral part of the materials-science course instruction. This effort was undertaken in order to give students additional experience in Fick’s 1st and 2nd laws and in-depth understanding of physics and mathematics involved in diffusion analysis. We chose to focus on Fick’s second law because its applications are not restricted to the materials-science field ...


Latex Modified Concrete - Very Early Strength, Bobby Steele Mar 2019

Latex Modified Concrete - Very Early Strength, Bobby Steele

Purdue Road School

INDOT came out with specifications for a very early strength concrete to use on bridge deck overlays. This concrete is fast setting, which allows overlays to be performed over a weekend and benefits the traveling public with a short duration of traffic interference. Cure time to reach the strength requirement is 3 hours. E&B Paving performed the first application with the new spec on August 26, 2018. Many changes were also made to the INDOT Specification Section 722.


Microwave Self-Healing Technology As Airfield Porous Asphalt Friction Course Repair And Maintenance System, Amir Tabakovic, Declan O'Prey, Drew Mckenna, David Woodward Mar 2019

Microwave Self-Healing Technology As Airfield Porous Asphalt Friction Course Repair And Maintenance System, Amir Tabakovic, Declan O'Prey, Drew Mckenna, David Woodward

Articles

A problem increasingly faced by airport authorities is the maintenance of runways. Due to their large aircraft loadings associated with take-off and landing operations, runways experience surface deterioration. Poor quality runway surfaces cannot be tolerated in such an environment. Maintenance issues must be carried out to maximise safety and minimise the risk of aircraft damage. A recent development has been the introduction of self-healing technologies such as rejuvenator encapsulation, induction and microwave heating to address these issues. This paper summarises a laboratory investigation to determine the effectiveness of microwave self-healing for crack repair of Porous Friction Course (PFC) used for ...


Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson Mar 2019

Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson

Protocols and Reports

Two reactive ion etching (RIE) processes were studied to show the relative etch selectivity between SiO2 and Si using two fluorocarbon gases, CF4 and CHF3. Results show that CHF3 gives better selectivity (16:1) over CF4 (1.2 :1). On the other hand, the etch rate of SiO2 of CF4 is approximately 52.8 nm/min, faster than CHF3 (32.4 nm/min).


On The Role Of Composition And Processing Parameters On The Microstructure Evolution Of Ti-Xmo Alloys, Michael Y. Mendoza, Peyman Samimi, David A. Brice, Iman Ghamarian, Matt Rolchigo, Richard Lesar, Peter Collins Jan 2019

On The Role Of Composition And Processing Parameters On The Microstructure Evolution Of Ti-Xmo Alloys, Michael Y. Mendoza, Peyman Samimi, David A. Brice, Iman Ghamarian, Matt Rolchigo, Richard Lesar, Peter Collins

Materials Science and Engineering Publications

Laser Engineered Net Shaping (LENS™) was used to produce a compositionally graded Ti-xMo (0 ≤ x ≤ 12 wt %) specimen and nine Ti-15Mo (fixed composition) specimens at different energy densities to understand the composition–processing–microstructure relationships operating using additive manufacturing. The gradient was used to evaluate the effect of composition on the prior-beta grain size. The specimens deposited using different energy densities were used to assess the processing parameters influence the microstructure evolutions. The gradient specimen did not show beta grain size reduction with the Mo content. The analysis from the perspective of the two grain refinement mechanisms based on a ...


Magneto-Active Slosh Control System Using Free Floating Membrane For Cylinderical Propellant Tanks Read More: Https://Arc.Aiaa.Org/Doi/Abs/10.2514/6.2019-2177, Pedro Llanos Jan 2019

Magneto-Active Slosh Control System Using Free Floating Membrane For Cylinderical Propellant Tanks Read More: Https://Arc.Aiaa.Org/Doi/Abs/10.2514/6.2019-2177, Pedro Llanos

Pedro J. Llanos (www.AstronauticsLlanos.com)

The phenomenon of sloshing is a substantial challenge in propellant management, particularly in reduced gravity where surface tension-driven flows result in large slosh amplitudes and relatively long decay time scales. Propellant Management Devices (PMDs) such as the rigid baffles and elastomeric membranes are often employed to counteract motion of the free surface. In the present study, we investigate an active PMD that utilizes a free-floating membrane that, under an applied static magnetic field, becomes rigid and suppresses slosh. This semi-rigid structural layer can thereby replace bulky baffle structures and reduce the overall weight of the tank. In this paper, the ...


3d Textile Preforms And Composites For Aircraft Strcutures: A Review, Abbasali Saboktakin Jan 2019

3d Textile Preforms And Composites For Aircraft Strcutures: A Review, Abbasali Saboktakin

International Journal of Aviation, Aeronautics, and Aerospace

Over the last decades, the development of 3D textile composites has been driven the structures developed to overcome disadvantages of 2D laminates such as the needs of reducing fabrication cost, increasing through-thickness mechanical properties, and improving impact damage tolerance. 3D woven, stitched, knitted and braided preforms have been used as composites reinforcement for these types of composites. In this paper, advantages and disadvantages of each of them have been comprehensively discussed. The fabric architects and their specification in particular stitched preforms and their deformation mode for aerospace applications have been reviewed. Exact insight into various types of damage in textile ...


Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean Dec 2018

Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean

Electronic Theses and Dissertations

Thermoplastic-matrix composite materials have unique advantages over traditional thermosets including faster processing, improved fracture toughness, and recyclability. These and other benefits have caused increasing interest in the use of these materials in both aerospace and automotive industries. Due to the differences in behavior, these materials require a different type of manufacturing process to thermoset matrix composites. This manufacturing process generally involves using pre manufactured tape-layers. These layers, containing both thermoplastic-matrix and fiber-reinforcement, are aligned to the desired orientation, and stacked up into a “tailored blank” using an automated tape layup machine. They are then heated to the thermoplastic melting temperature ...


Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke Dec 2018

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke

Civil Engineering ETDs

Ductile failure of metals has been the focus of research efforts within academia and industry for many years since it is tremendously important for understanding the failure of structures under extreme loading conditions. However, limited research has been dedicated to elevated temperature ductile failure, which is critical for evaluating catastrophic events such as industrial, structural or shipping vessel fires. A detailed investigation was conducted on the structural response of Duplex Stainless Steel at elevated temperatures. The temperature dependence of elastic modulus, yield strength, ultimate strength, and ductility was measured up to 1000°C and a continuum damage plasticity model was ...


Young’S Modulus As A Measurement To Estimate Damage Related With Alkali-Silica Reaction In Concrete., Anazaria J. Ortega Gonzalez Dec 2018

Young’S Modulus As A Measurement To Estimate Damage Related With Alkali-Silica Reaction In Concrete., Anazaria J. Ortega Gonzalez

Civil Engineering Undergraduate Honors Theses

The main purpose of this research is to compare two nondestructive methods to assess Alkali-Silica reaction (ASR) in concrete. Fifteen concrete prisms were cast using aggregates with different Alkali-Silica reactivity such as Jobe sand and Van Buren sand. The change in strain, shear wave velocity and Young’s modulus were determined according to ASTM C129 and ASTM C215, respectively. This data was collected by Dillon K Self, who determined that the shear wave velocity and strain are inversely proportional. However, when single cracking in the concrete specimen transition to map cracking, the shear wave velocity dropped significantly, whereas the strain ...


Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe Dec 2018

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe

Mechanical Engineering

Reinventing the Wheel selected tires and designed wheels for the 2018 Cal Poly, San Luis Obispo Formula SAE combustion vehicle. Available tire options were evaluated for steady-state and transient performance as well as vehicle integration. A single-piece composite wheel with hollow spokes was designed to meet stiffness, strength, and tolerance requirements. A detailed study of wheel loading and geometric structural efficiency was performed. Finite element analysis was used to iterate the geometry and laminate. A two-piece male mold was designed and machined to manufacture the wheel. Removable silicone inserts were used to create the hollow spokes.


Compensation Of Vertical Position Error Using A Force–Deflection Model In Friction Stir Spot Welding, Jinyoung Yoon, Cheol-Hee Kim, Sehoon Rhee Dec 2018

Compensation Of Vertical Position Error Using A Force–Deflection Model In Friction Stir Spot Welding, Jinyoung Yoon, Cheol-Hee Kim, Sehoon Rhee

Mechanical and Materials Engineering Faculty Publications and Presentations

Despite increasing need for friction stir spot welding (FSSW) for high-temperature softening materials, system deflection due to relatively high plunging force remains an obstacle. System deflection results in the vertical position error of a welding tool and insufficient plunge depth. In this study, we used adaptive control to maintain plunge depth, the plunging force was coaxially measured, and the position error was estimated using a force–deflection model. A linear relationship was confirmed between the force and deflection; this relationship is dependent on the stiffness of the welding system while independent of process parameters and base materials. The proposed model ...


Prediction Of Metal Sample Failure From Scanning Electron Microscope Images Using Deep Learning Neural Network, Lawrence Madriaga, Ivan Novikov, Morteza Nurcheshmeh Nov 2018

Prediction Of Metal Sample Failure From Scanning Electron Microscope Images Using Deep Learning Neural Network, Lawrence Madriaga, Ivan Novikov, Morteza Nurcheshmeh

Posters-at-the-Capitol

We present the preliminary results on using a deep learning neural network to predict a metal sample failure based on a set of images obtained with a Scanning Electron Microscope.

Various metal alloy samples were prepared according to ASTM E8/E8M-11 standards for a tensile test. Each sample was prepared for circle grid analysis and then stressed on a tensile machine. Stress and strain values were obtained for each position along the sample by measuring dimensions of each elongated circle. Increasing stress and strain values were found closer to the breakage of the sample with low values found at the ...


Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti Nov 2018

Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti

Shared Knowledge Conference

Ultrasonic monitoring in cementitious materials is challenging due to the high degree of attenuation. In wellbore environments, monitoring becomes more challenging due to inaccessibility. Meta materials, also known as acoustic bandgap materials, exhibit an interesting feature of forbidding the propagation of elastic/sound waves and isolate vibration in a certain frequency band. Traditionally, acoustic bandgap materials are developed with inclusions such as tin, aluminum, gold, steel in a polymer matrix. In this study, we present the development of three-dimensional cementitious sensors capable of exhibiting stopbands in the acoustic transmission spectra using carbon nanotubes. Relatively wide stopbands were engineered using Floquet-Bloch ...


Lattice Instability During Solid-Solid Structural Transformations Under A General Applied Stress Tensor: Example Of Si I → Si Ii With Metallization, Nikolai A. Zarkevich, Hao Chen, Valery I. Levitas, Duane D. Johnson Oct 2018

Lattice Instability During Solid-Solid Structural Transformations Under A General Applied Stress Tensor: Example Of Si I → Si Ii With Metallization, Nikolai A. Zarkevich, Hao Chen, Valery I. Levitas, Duane D. Johnson

Aerospace Engineering Publications

The density functional theory was employed to study the stress-strain behavior and elastic instabilities during the solid-solid phase transformation (PT) when subjected to a general stress tensor, as exemplified for semiconducting Si I and metallic Si II, where metallization precedes the PT, so stressed Si I can be a metal. The hydrostatic PT occurs at 76 GPa, while under uniaxial loading it is 11 GPa (3.7 GPa mean pressure), 21 times lower. The Si I → Si II PT is described by a critical value of the phase-field’s modified transformation work, and the PT criterion has only two parameters ...


Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira Sep 2018

Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira

Journal of Applied Packaging Research

Packages made of corrugated paper are fundamental to the protection, transportation and handling of the appliance product market. During the storage and sales stages of a product, the package must resist compressive loads in different directions beyond moderate impacts. In this context, the objective of this work is to develop and implement a post-processor that allows the simultaneous analysis of two of the most common failure modes of packages made of corrugated paper: failure due to tensile or compressive stress limit, and failure due to local buckling, when the buckling of the faces of the corrugated paper between two peaks ...


Improving Sheet Molding Compound, Zebulon G. Mcreynolds Sep 2018

Improving Sheet Molding Compound, Zebulon G. Mcreynolds

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Zebulon McReynolds

An important attribute of the compression molding process is the requirement of (Sheet Molding Compound) SMC. The fibers, commonly glass or carbon fibers, are impregnated with thermoset resin and collected in continuous form on a conveyor belt. The SMC charge is rolled between rollers to wet out the fibers with resin. The SMC charge is then compression molded to a desired part reflecting the designed mold. The part could be an automotive part or any other industrial applicable part. Compression molding with fibers and polymers is the largest component of most of the manufacturing industries in the world ...


Microstructure Design Using Graphs, Pengfei Du, Adrian Zebrowski, Jaroslaw Zola, Baskar Ganapathysubramanian, Olga Wodo Sep 2018

Microstructure Design Using Graphs, Pengfei Du, Adrian Zebrowski, Jaroslaw Zola, Baskar Ganapathysubramanian, Olga Wodo

Mechanical Engineering Publications

Thin films with tailored microstructures are an emerging class of materials with applications such as battery electrodes, organic electronics, and biosensors. Such thin film devices typically exhibit a multi-phase microstructure that is confined, and show large anisotropy. Current approaches to microstructure design focus on optimizing bulk properties, by tuning features that are statistically averaged over a representative volume. Here, we report a tool for morphogenesis posed as a graph-based optimization problem that evolves microstructures recognizing confinement and anisotropy constraints. We illustrate the approach by designing optimized morphologies for photovoltaic applications, and evolve an initial morphology into an optimized morphology exhibiting ...


High Performance Mortar With 100% Recycled Aggregate Using Titanium Dioxide Nanoparticles, Molly Schrager, Vito Francioso, Arjun Kadakia, Mirian Velay-Lizancos Aug 2018

High Performance Mortar With 100% Recycled Aggregate Using Titanium Dioxide Nanoparticles, Molly Schrager, Vito Francioso, Arjun Kadakia, Mirian Velay-Lizancos

The Summer Undergraduate Research Fellowship (SURF) Symposium

Concrete and mortar are materials commonly used in construction. Their main compounds are cement, aggregates (sand and gravel) and water. In an effort to increase the sustainability of these materials, the idea of using recycled aggregates from ground old concrete and using it to make mortar and concrete has gained more interest. It has two advantages: it reduces the need to mine for raw materials and lessens the amount of old and defective concrete that is typically put in landfills. But, the use of recycled concrete aggregate lowers the strength of mortars and concretes because the residual compounds in the ...


Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev Aug 2018

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer ...


Determining The Optimal Traffic Opening Time Using Piezoelectric Sensors, Adlan Amran, Yen-Fang Su, Na Lu Aug 2018

Determining The Optimal Traffic Opening Time Using Piezoelectric Sensors, Adlan Amran, Yen-Fang Su, Na Lu

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Indiana Department of Transportation (INDOT) requires a reliable method of determining the early age quality of concrete to improve traffic opening time. We propose to develop an in-situ method that enables an accurate, efficient, and non-destructive health monitoring of concrete using the electromechanical impedance (EMI) technique coupled with a piezoelectric sensor named Lead Zirconate Titanate (PZT). The test was conducted by mounting a PZT sensor on mortar samples. The PZT sensor was then excited by a voltage to track the strengthening of samples. The data obtained from the EMI technique was refined using the Root Mean Square Deviation (RMSD ...


Solid Solution Strengthened Fe Alloys, Sidharth Krishnamoorthi, Ruizhe Su, Yifan Zhang, Xinghang Zhang Aug 2018

Solid Solution Strengthened Fe Alloys, Sidharth Krishnamoorthi, Ruizhe Su, Yifan Zhang, Xinghang Zhang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Iron (Fe)-based alloys (such as steel) are widely used structural materials in industry. Numerous methods have been applied to improve their mechanical properties. In this study, we used a technique know as magnetron sputtering to deposit various Fe-based binary alloy coatings to investigate the influence of solutes on solid solution hardening. Several factors contribute to the solid solution hardening of the alloys, such as composition, atomic radius, modulus, and lattice parameter. After preliminary calculations and analysis, we selected several solutes, including molybdenum (Mo), niobium (Nb), and zirconium (Zr). The compositions of solutes were varied to be 2.5, 5 ...


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed ...


Improving And Augmenting The Anm Model For Three-Dimensional Virtual Concrete, Stephen Thomas Aug 2018

Improving And Augmenting The Anm Model For Three-Dimensional Virtual Concrete, Stephen Thomas

Boise State University Theses and Dissertations

The Anm model used for creating virtual concrete consisting of irregular shapes has been improved by integrating two existing algorithms: the extent overlap box (EOB) method for detecting contact between two irregular shapes and the uniform thickness shell algorithm. The EOB method has been compared with the previously used Newton-Raphson method and shown to be able to detect inter-particle contact with better accuracy and with less computational cost. Two parameters that define the balance between accuracy and performance of the EOB method have been identified and studied. The uniform thickness shell has been used to specify the minimum inter-particle distance ...


Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing ...