Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 77

Full-Text Articles in Polymer and Organic Materials

Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham Dec 2015

Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham

Nancy A. Burnham

An atomic force microscope (AFM) was used to measure the steric forces of lipopolysaccharides (LPS) on the biofilm-forming bacteria, Pseudomonas aeruginosa. It is well known that LPS play a vital role in biofilm formation. These forces were characterized with a modified version of the Alexander and de Gennes (AdG) model for polymers, which is a function of equilibrium brush length, L, probe radius, R, temperature, T, separation distance, D, and an indefinite density variable, s. This last parameter was originally distinguished by de Gennes as the root spacing or mesh spacing depending upon the type of polymer adhesion; however since …


Synthesis And Characterizations Of Stimuli-Responsive Polymeric Materials For Biomedical Applications, Shuangcheng Tang Dec 2015

Synthesis And Characterizations Of Stimuli-Responsive Polymeric Materials For Biomedical Applications, Shuangcheng Tang

Doctoral Dissertations

Stimuli-responsive polymeric materials have been now widely researched toward the biomedical applications including therapeutic delivery, bio-sensor surface modification, and tissue-engineering, etc., considering their desirable biocompatibility, tunable properties, and sensitivity toward physiological stimuli. Beyond the monoresponsive materials, polymers with responsiveness simultaneously toward multiple stimuli are paid great attention to because the control of responsive behaviors could be achieved at a more accurately and delicately level in a complex local environment. However, many challenges still exist such as maintaining integrity of the structure, shaping the morphology at micro- and macro-scale, and regulating a controllable and predictable transition behavior.

The objectives of this …


Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das Dec 2015

Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das

Doctoral Dissertations

The first part of this dissertation focuses on interface and morphology engineering in polymer- and small molecule-based organic solar cells. High-performance devices were fabricated, and the device performance was correlated with nanoscale structures using various electrical, spectroscopic and microscopic characterization techniques, providing guidelines for high-efficiency cell design.

The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic technology with skyrocketing rise in power conversion efficiency (PCE) and currently showing comparable PCEs with those of existing thin film photovoltaic technologies such as CIGS and CdTe. Fabrication of large-area PSCs without compromising reproducibility and device PCE requires formation of dense, …


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are …


Novel Thermoplastic Elastomers Based On Benzofulvene: Synthesis And Mechanical Properties, Weiyu Wang Dec 2015

Novel Thermoplastic Elastomers Based On Benzofulvene: Synthesis And Mechanical Properties, Weiyu Wang

Doctoral Dissertations

Thermoplastic elastomers (TPEs) are of great importance both academically and technologically. Currently TPEs are the predominated form of styrene-diene copolymers. However, these styrenic TPEs have serious limitations in applications, especially at higher temperature, because of their low upper service temperature (UST). The work described in this dissertation aimed to developing thermoplastic elastomers with a higher UST and lower cost.

In order to develop TPEs with a higher UST, we employed benzofulvene, an anionically polymerizable monomer in hydrocarbon solvent at room temperature, as the glassy block and copolymerized it with isoprene to prepare polybenzofulvene-polyisoprene-polybenzofulvene (FIF) triblock copolymers. Among all triblock copolymers …


Effects Of Expected Service Life Exposures On The Functional Properties And Impact Performance Of An American Football Helmet Outer Shell Material, David E. Krzeminski Dec 2015

Effects Of Expected Service Life Exposures On The Functional Properties And Impact Performance Of An American Football Helmet Outer Shell Material, David E. Krzeminski

Dissertations

The purpose of this dissertation is to gain a greater scientific understanding of the changes in functional material properties and impact performance of an American football helmet outer shell material under expected service life exposures. The research goals are to (i) quantify chemical, physical, thermal, and mechanical degradation of an American football outer shell material under expected environmental conditions and (ii) develop a linear drop test impact protocol to employ expected on-field impact conditions to American football helmet components and a plaque-foam (i.e., shell-liner) surrogate. Overall, a step-wise progression of analysis was demonstrated to concurrently quantify and understand changes in …


Development Of Dual-Cure Hybrid Polybenzoxazine Thermosets, Jananee Narayanan Sivakami Dec 2015

Development Of Dual-Cure Hybrid Polybenzoxazine Thermosets, Jananee Narayanan Sivakami

Dissertations

Polybenzoxazines are potential high performance thermoset replacements for traditional phenolic resins that can undergo an autocatalytic, thermally initiated ring - opening polymerization, and possess superior processing advantages including excellent shelf-life stability, zero volatile loss and limited volumetric shrinkage. The simplistic monomer synthesis and availability of a wide variety of inexpensive starting materials allows enormous molecular design flexibility for accessing a wide range of tailorable material properties for targeted applications. Despite the fact, once fully cured, benzoxazines are difficult to handle due to their inherent brittleness, leaving a very little scope for any modifications. The motivation of this dissertation is directed …


Hybrid Aryl-Ether-Ketone And Hyperbranched Epoxy Networks, John Misasi Dec 2015

Hybrid Aryl-Ether-Ketone And Hyperbranched Epoxy Networks, John Misasi

Dissertations

In this dissertation, relationships between chemical structures, cure kinetics and network architectures are correlated to bulk mechanical properties for novel, hybrid epoxy-amine networks. The work is split into two primary sections: the first is the synthesis and characterization of multifunctional glassy networks based on aryl-ether-ketone diamine curatives, while the second is based on the synthesis and characterization of hyperbranched epoxy polymers and their resulting networks.

Three aryl-ether-ketone (AEK) diamines of increasing molecular weights were synthesized and used to cure 4,4’-tetraglycidylether of diaminodiphenylmethane (TGDDM); the resulting networks were compared to 4,4’-diaminodiphenyl sulfone cured TGDDM. Architectural differences were created by varying cure …


Polyacrylonitrile Copolymers: Effects Of Molecular Weight, Polydispersity, Composition, And Sequencing On Thermal Ring-Closing Stabilization, Jeremy D. Moskowitz Dec 2015

Polyacrylonitrile Copolymers: Effects Of Molecular Weight, Polydispersity, Composition, And Sequencing On Thermal Ring-Closing Stabilization, Jeremy D. Moskowitz

Dissertations

Controlled polyacrylonitrile (PAN)-based carbon fiber precursors with defined molecular weights, polydispersities, compositions, and architectures have been prepared for their study on thermal ring-closing stabilization behavior. PAN and its copolymers of number average molecular weights exceeding 170,000 g/mol were successfully synthesized via low temperature reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerizations of PAN-based precursors were compared to conventional free radical solution polymerizations with a focus on the effects of molecular weight and polydispersity on structural evolution and cyclization efficiency. When RAFT polymerization was extended to copolymers, it was found that RAFT copolymers achieved greater cyclization intensities and improved thermal stability …


A Platform For Fast Detection Of Let-7 Micro Rna Using Polyaniline Fluorescence And Image Analysis Techniques, Partha P. Sengupta Dec 2015

A Platform For Fast Detection Of Let-7 Micro Rna Using Polyaniline Fluorescence And Image Analysis Techniques, Partha P. Sengupta

Master's Theses

The project describes a new strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10-11 M (10 pM) of target oligonucleotides could be detected within 15 minutes of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to …


Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock Dec 2015

Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock

Master's Theses

Composite materials offer a high strength-to-weight ratio and directional load bearing capabilities. Compression molding of composite materials yields a superior surface finish and good dimensional stability between component lots with faster processing compared to traditional manufacturing methods. This experimental compression molding capability was developed for the ME composites lab using unidirectional carbon fiber prepreg composites. A direct comparison was drawn between autoclave and compression molding methods to validate compression molding as an alternative manufacturing method in that lab. A method of manufacturing chopped fiber from existing unidirectional prepreg materials was developed and evaluated using destructive testing methods. The results from …


Evaluation Of External Coating Performance On Buried Pipelines In The Oil And Gas Industry, Mohammed A. Alrudayni Nov 2015

Evaluation Of External Coating Performance On Buried Pipelines In The Oil And Gas Industry, Mohammed A. Alrudayni

FIU Electronic Theses and Dissertations

Protective coatings is used to enhance the corrosion resistance of buried pipelines. However, the effectiveness of epoxy-coatings may be compromised due to inadvertent presence of surface damage and coating disbondment. Additionally, the disbonded coated panels is expected to be less effective than that of scratched or un-defected panels. This research was designed to evaluate the coating performance of FBE and hybrid epoxy in simulated Arabian Gulf water and synthetic Sabkha. The influence of coating damage and disbondment on corrosion resistance was also investigated.

Results of this research indicated a reduction in the adhesion bond between the coatings and substrate. The …


Evaluation Of Organic Protective Coatings As Corrosion Prevention For The Interior Of Subsea Pipelines In Sour Gas Service, Faris M. Alkordy Nov 2015

Evaluation Of Organic Protective Coatings As Corrosion Prevention For The Interior Of Subsea Pipelines In Sour Gas Service, Faris M. Alkordy

FIU Electronic Theses and Dissertations

The purpose of this study was to examine the performance of several generic types of organic protective coatings as a corrosion protection method for the interior of subsea pipelines in sour gas media. The sour gas environment was simulated in the laboratory by the use of an Autoclave and the performance of the organic coatings was studied via the use of Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization Resistance (LPR) tests to determine the coatings resistance, capacitance and corrosion behavior before and after the exposure to sour gas environment. The coating degradation and the corrosion products formed were examined by …


Volatile Condensible Material Deposition In Leo Simulated Environment, Jinya Pu Nov 2015

Volatile Condensible Material Deposition In Leo Simulated Environment, Jinya Pu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Room Temperature Vulcanized (RTV) silicone and compounds are widely used in outer-space for bonding or potting spacecraft components. In geosynchronous equatorial orbit (GEO), the silicone may outgas species which can condense on optically sensitive surfaces and degrade their performance, therefore shortening the lifetime of spacecraft. In low-earth-orbit (LEO), the silicone rubber is subject to an energetic and corrosive environment. Atomic oxygen (AO) and ultraviolet radiation can cause abrasion and degradation of the silicone rubber, cause changes in existing condensed VCM films and affect the properties of VCM films condensing in this atmosphere. Experiments were performed to simulate GEO conditions. In …


The Development Of A Novel Polymer Based System For Gene Delivery, Anh Van Le Nov 2015

The Development Of A Novel Polymer Based System For Gene Delivery, Anh Van Le

FIU Electronic Theses and Dissertations

Gene therapy involves the use of nucleic acids, either DNA or RNA for the treatment, cure, or prevention of human diseases. Synthetic cationic polymers are promising as a tool for gene delivery because of their high level of design flexibility for biomaterial construction and are capable of binding and condensing DNA through electrostatic interactions.

Our lab has developed a novel polymer (poly (polyethylene glycol-dodecanoate) (PEGD), a polyester of polyethylene glycol (PEG) and dodecanedioic acid (DDA). PEGD is a linear viscous polymer that self-assembles into a vesicle upon immersion in an aqueous solution. A copolymer of dodecanedioc acid and polyethylene glycol …


Devices For Application And Load Bearing And Method Of Using The Same, Alfred J. Crosby, Michael D. Bartlett, Duncan J. Irschick, Daniel R. King Nov 2015

Devices For Application And Load Bearing And Method Of Using The Same, Alfred J. Crosby, Michael D. Bartlett, Duncan J. Irschick, Daniel R. King

Michael Bartlett

Gecko-like adhesive application devices suited for dynamic applications are disclosed, where the device can be easily applied to target substrates, exhibiting a firm hold, and subsequently released therefrom. Gecko-like adhesive application devices that are suited for sustained holding after easy application (e.g., on vertical or inclined surfaces or ceiling) also are disclosed.


Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous Nov 2015

Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous

Doctoral Dissertations

An optimal nanoscale phase separation between the donor (generally, a conjugated polymer) and the acceptor (generally, a fullerene derivative) materials is one of the major requirements for obtaining high efficiency organic photovoltaic (OPV) device. Recent methods of controlling such nanostructure morphology in a bulkheterojunction (BHJ) OPV device involve addition of a small amount of solvent additive to the donor and acceptor solutions. The idea is to retain the acceptor materials into the solution for a longer period of time during the film solidification process, thus allowing the donor material to crystallize earlier. The ultimate morphology resulting from the solvent casting …


Effect Of Processing History And Material Properties On The Growth Of Wrinkle Amplitude, Yu-Cheng Chen Nov 2015

Effect Of Processing History And Material Properties On The Growth Of Wrinkle Amplitude, Yu-Cheng Chen

Doctoral Dissertations

Wrinkling has been employed by many organisms to form unique topography, such as fingerprints, gut villi, and surface of flower petal cells. The wavy wrinkle structure provides friction enhancement, surface area increase, optical, and wetting properties improvement. Inspired by Nature, scientists have created wrinkles synthetically and proposed numerous uses for them. However, wrinkling surfaces encounters limitations on achieving massive area and high amplitude-to-wavelength ratio (aspect ratio). The three phase contact line wrinkling technique creates well-defined wrinkles in a continuous fashion, and has great potential to scale-up for massive production. In addition to the velocity dependent adhesion force, we find the …


Process-Structure-Property Relationship In Ultra High Molecular Weight Polytetrafluoroethylene And Double Network Epoxies, Ranadip Ganguly Nov 2015

Process-Structure-Property Relationship In Ultra High Molecular Weight Polytetrafluoroethylene And Double Network Epoxies, Ranadip Ganguly

Doctoral Dissertations

The focus of this dissertation is to develop a fundamental understanding of process-structure-property relationship in two different classes of polymers: semi-crystalline Ultra High Molecular Weight Polytetrafluoroethylene (UHMWPTFE) and amorphous glassy double network (DN) epoxies. Conventional melt processing techniques such as extrusion and injection molding cannot be applied to UHMWPTFE due to its very high melt viscosity (1010-1011 poise). Therefore, UHMWPTFE is industrially processed by a modified metallurgy technology-sintering. However, the fundamental mechanism for UHMWPTFE sintering is unknown. Further, this process is highly time consuming, cost inefficient and hinders the recyclability of the material. The first part of …


Influence Of Carbon Nanofillers On The Curing Kinetics Of Epoxy-Amine Resin, Luigi Vertuccio, Salvatore Russo, Marialuigia Raimondo, Khalid Lafdi, Liberata Guadagno Oct 2015

Influence Of Carbon Nanofillers On The Curing Kinetics Of Epoxy-Amine Resin, Luigi Vertuccio, Salvatore Russo, Marialuigia Raimondo, Khalid Lafdi, Liberata Guadagno

Chemical and Materials Engineering Faculty Publications

The cure kinetics of an epoxy resin based on the tetrafunctional epoxy precursor N,N′-tetraglycidyl methylene dianiline-(TGMDA) hardened with 4,4-diaminodiphenyl sulfone is investigated. The influence of carbon nanofillers (carbon nanotubes, carbon nanofibers, and graphene based nanoparticles) on the cure kinetic is studied. Kinetic analysis is performed by dynamic and isothermal differential scanning calorimetry (DSC).

In dynamic experiments, the activation energy was computed using an advanced isoconversional method while under isothermal conditions, the Kamal’s model of diffusion control was applied to simulate the systems throughout the curing process. The isothermal analysis shows that the introduction of the diluent decreases, …


Improvement Of Mechanical Properties And Water Stability Of Vegetable Protein Based Plastics, Gowrishankar Srinivasan Sep 2015

Improvement Of Mechanical Properties And Water Stability Of Vegetable Protein Based Plastics, Gowrishankar Srinivasan

Gowrishankar Srinivasan

Bio-renewable bio-degradable plastics are a potential solution to the growing problems of pollution caused by petroleum plastics and dependency on foreign nations for petroleum resources. One possible feed stock for these materials are vegetable proteins, especially from soy bean and corn. These proteins have relatively high molecular weights and have the potential of being processed with standard polymer processing technologies. But some issues that need to be addressed are their water instability (soy protein) and inferior mechanical properties as compared to petroleum derived plastics. In this study, soy protein isolates (SPI) and zein protein was processed with various additives and …


Mechanical And Electro-Mechanical Properties Of Crystalline Organic Semiconductors, Marcos A. Reyes-Martinez Aug 2015

Mechanical And Electro-Mechanical Properties Of Crystalline Organic Semiconductors, Marcos A. Reyes-Martinez

Doctoral Dissertations

The study of the physical properties of organic crystalline semiconductors has allowed the advent of a new generation of high-performance organic electronic devices. Exceptional charge-transport properties and recent developments in large-area patterning techniques make organic single crystals (OSCs) excellent candidates for their utilization in the next-generation of electronic technologies, including flexible and conformable organic thin-film devices. In spite of the profound knowledge of the structural and electrical properties of OSCs, knowledge of the mechanical properties and the effects of mechanical strain is almost non-existent. This dissertation aims to bring new understanding of the intrinsic mechanical properties and the effect of …


Mechanics Of Helical And Fabric-Like Mesostructures From Polymer-Nanoparticle Hybrids, Jonathan T. Pham Aug 2015

Mechanics Of Helical And Fabric-Like Mesostructures From Polymer-Nanoparticle Hybrids, Jonathan T. Pham

Doctoral Dissertations

Hierarchical structures developed from nanoscale building blocks offer an excellent opportunity to control properties on all length scales, from the molecular level up to the macroscale. Many beautiful examples in Nature have demonstrated the significance of controlling geometry and mechanics on small length scales to control function on an organism-level, shown by the strength of bones, the toughness of a mollusk's shell, or the gecko's ability to climb walls. Inspired by stunning examples in both Nature and common man-made materials and structures, we assemble polymers and inorganic nanoparticles (NPs) with well-defined surface chemistry into long ribbons and fabric-like networks with …


Ultra-Thin Polymer Films And Hierarchical Composites: Processing And Mechanical Properties, Yujie Liu Aug 2015

Ultra-Thin Polymer Films And Hierarchical Composites: Processing And Mechanical Properties, Yujie Liu

Doctoral Dissertations

Properties and fabrications of ultra-thin polymer films and hierarchical composites are of great interest in packaging, electronics, separations, and other manufacturing fields. However, due to the inherently fragile nature of ultra-thin polymer films, measuring their properties has proven difficult. Additionally, variables controlling thin polymer patterns (e.g. substrate wetting property) and composites (weight percent of particulates in matrix) formation have not been fundamentally well understood. Within this spectrum, fundamental understanding of formation mechanisms of these patterns and composites are needed. Additionally, a new characterization technique is required to be able to measure the mechanical properties of fabricated composites and thin films. …


Fabric And Soft Materials Composites For Bio-Inspired Adhesives And Prosthetics, Daniel R. King Aug 2015

Fabric And Soft Materials Composites For Bio-Inspired Adhesives And Prosthetics, Daniel R. King

Doctoral Dissertations

Adhesives have long been designed around a trade-off between adhesive strength and releasability. Within this spectrum, specialized materials have been designed to maximize adhesive ability for a given application. To overcome this trade-off, a new adhesive paradigm is required. Biologically inspired adhesives have been of interest over the past two decades, because organisms are seen using their adhesive pads to achieve high adhesive forces, while maintaining releasability and reusability. Many biological organisms possess microscopic fibrillar features on their toe-pads, which enables climbing. While much effort has been spent attempting to mimic these features, ultimately high force capacities have not been …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli Aug 2015

Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli

Doctoral Dissertations

This dissertation describes the synthesis of photo-crosslinkable copolymers and their utilization for the fabrication and testing of tunable and responsive one-dimensional (1D) photonic multilayers. Photonic multilayers exhibit structural color due to the interference of incident light at layer interfaces, providing a convenient route towards optically responsive materials that do not rely on potentially light- or oxygen-sensitive chromophore-containing pigments and dyes. A fabrication technique based on sequential spin-coating and crosslinking of photo-crosslinkable polymers is used to assemble tunable and responsive photonic multilayers. Chapter One introduces the fundamental underlying principles of 1D photonic structures and explores their importance in a variety of …


Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu Aug 2015

Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu

Md Mahmudur Rahman

No abstract provided.


Fracture Mechanics-Based Simulation Of Pv Module Delamination, Dominic I. Jarecki, Johanna B. Palsdottir, Peter Bermel, Marisol Koslowski Aug 2015

Fracture Mechanics-Based Simulation Of Pv Module Delamination, Dominic I. Jarecki, Johanna B. Palsdottir, Peter Bermel, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photovoltaic (PV) cells are rapidly growing as a renewable alternative to fossil fuels like coal, oil, and natural gas. However, greater adoption has also reduced government subsidies, placing the onus of making solar panels economically competitive on innovative research. While multiple methods have been considered for reducing costs, with each reduction in cost comes the associated peril of reduction in quality and useful lifetime. Several problems considered solved have now resurfaced as potential failure mechanisms with the introduction of cheaper PV cell technologies. However, to remain economically viable, PV modules will not only have to become cheaper, they will have …


Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay Aug 2015

Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay

The Summer Undergraduate Research Fellowship (SURF) Symposium

More than half of the annual energy consumption in the United States is lost as waste heat. Polymer-based thermoelectric devices have the potential to utilize this waste heat both sustainably and cost-effectively. Although conjugated polymers currently dominate research in organic thermoelectrics, the potential of using polymers with radical pendant groups have yet to be realized. These polymers have been found to be as conductive as pristine (i.e., not doped) poly(3-hexylthiophene) (P3HT), a commonly-used charge-transporting conjugated polymer. This could yield promising avenues for thermoelectric material design as radical polymers are more synthetically tunable and are hypothesized to have a high Seebeck …