Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 45

Full-Text Articles in Polymer and Organic Materials

Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai Jan 2023

Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai

Theses and Dissertations--Chemical and Materials Engineering

Soft, slippery surfaces have gained increasing attention due to their wide range of potential applications, for example in self-cleaning, anti-fouling, liquid collection, and more. One design approach in creating slippery surfaces is using a swollen elastomer, which is a polymer network swollen with a lubricant. This type of surface may be beneficial for longer-term use than standard lubricant-infused surfaces, and provides a versatile surface with tunable mechanical properties. Hence, understanding the physics of soft surface interactions is important for fundamental soft matter physics, biomaterials, adhesives, and coatings. This research experimentally investigates wetting on soft infused networks, with the aim of …


Microscale Contact And Friction Of Low Modulus, Lightly Crosslinked Polydimethylsiloxane, Justin Glover Jan 2022

Microscale Contact And Friction Of Low Modulus, Lightly Crosslinked Polydimethylsiloxane, Justin Glover

Theses and Dissertations--Chemical and Materials Engineering

Friction and adhesion of soft materials are important for pressure sensitive adhesives, biomaterials, and soft robotics; however, the behavior on the microscale is not fully understood. When two objects come into contact, their interactions are usually mediated by small contact points due to surface roughness. At the microscale size, surface forces can deform soft materials to minimize energy by increasing the contact area, which is balanced by the elastic deformation of the polymer network. However, for soft, crosslinked materials with a modulus below ~100 kPa, it is challenging to predict the behavior with prior contact and friction models. Additionally, lightly …


Tailoring Thermoresponsive Poly(N-Isopropylacrylamide) Toward Sensing Perfluoroalkyl Acids, Dustin Thomas Savage Jan 2021

Tailoring Thermoresponsive Poly(N-Isopropylacrylamide) Toward Sensing Perfluoroalkyl Acids, Dustin Thomas Savage

Theses and Dissertations--Chemical and Materials Engineering

Widespread distribution of poly- and perfluoroalkyl substances (PFAS) in the environment combined with concerns for their potentially negative health effects has motivated regulators to establish strict standards for their surveillance. The United States Environmental Protection Agency issued a cumulative domestic threshold of 70 ppt for water supplies, and this bar is even lower in some local districts and other countries. Monitoring PFAS consequently requires sensitive analytical equipment to meet regulatory specifications, and liquid chromatography with tandem mass spectroscopy (LC/MS/MS) is the most common technique used to satisfy these requirements. Though extremely sensitive, the instrument is often burdened by pretreatment regimens, …


Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan Jan 2021

Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan

Theses and Dissertations--Mechanical Engineering

PTFE-based materials are widely used in areas of tribology, particularly in seal and bearing applications because of their outstanding self-lubricating properties. Often in dynamic seal applications there is a need for ultra-low mechanical friction loss between the sealing surfaces. Due to its extremely low friction coefficient, there is interest in employing Polytetrafluoroethylene (PTFE) materials in such applications. One challenging aspect of employing PTFE is that these materials are viscoelastic and plastic. This dissertation concentrates on the modeling of viscoelastic material response when used as mechanical face seals with a focus on PTFE-based materials. First, the viscoelastic characteristics are measured through …


The Development Of Structural Hollow Carbon Fibers From A Multifilament Segmented Arc Spinneret: Precursors, Oxidation, And Carbonization, Elizabeth Ashley Morris Jan 2021

The Development Of Structural Hollow Carbon Fibers From A Multifilament Segmented Arc Spinneret: Precursors, Oxidation, And Carbonization, Elizabeth Ashley Morris

Theses and Dissertations--Chemical and Materials Engineering

Carbon fiber is an ideal material for structural applications requiring high strength and stiffness and low weight. Yet it has seen only incremental improvements in properties over the last few decades. Carbon fibers remain limited in attaining their theoretical tensile strength and modulus, largely due to defects in their structure, some of which stem from the fiber production process itself. Through the mitigation of defect formation as well as approaches to decrease fiber linear density, it is hypothesized that carbon fiber with enhanced specific properties, including specific strength and modulus, could be produced which would significantly propel its unique capabilities. …


Electrophoresis In Heterogeneous Hydrogels And Applications In Surface Patterning, Ning Ge Jan 2020

Electrophoresis In Heterogeneous Hydrogels And Applications In Surface Patterning, Ning Ge

Theses and Dissertations--Mechanical Engineering

The creation of chemical micropatterns on surfaces makes it possible to add unique chemical functionality to surfaces, modifying properties such as wettability, or even adding the ability to selectively bind other molecules. The creation of biochemical surface patterning in particular is useful in a variety of fields including tissue engineering and highthroughput drug screening. There are many existing surface patterning techniques which focus on precise control over the patterned geometry, even down to submicron scale features, but they do not allow local control over chemical concentration. So the results are high resolution patterns with binary concentration. There are also existing …


A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi Jan 2020

A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi

Theses and Dissertations--Physics and Astronomy

Applications of organic electronics have increased significantly over the past two decades. Organic semiconductors (OSC) can be used in mechanically flexible devices with potentially lower cost of fabrication than their inorganic counterparts, yet in many cases organic semiconductor-based devices suffer from lower performance and stability. Investigating the doping mechanism, charge transport, and charge transfer in such materials will allow us to address the parameters that limit performance and potentially resolve them. In this dissertation, organic materials are used in three different device structures to investigate charge transport and charge transfer. Chemically doped π-conjugated polymers are promising materials to be used …


Interfaces In Lead-Free Tin Perovskite Photovoltaics: An Investigation Of Energetics, Ion Mobility, Surface Modification, And Performance, Alex Boehm Jan 2020

Interfaces In Lead-Free Tin Perovskite Photovoltaics: An Investigation Of Energetics, Ion Mobility, Surface Modification, And Performance, Alex Boehm

Theses and Dissertations--Chemistry

Halide perovskites have generated tremendous interest as low-cost semiconductors for optoelectronics, such as photovoltaics, lasers, and light emitting diodes due to their extraordinary optical and transport properties. Perovskite photovoltaics in particular have demonstrated a meteoric rise in power conversion efficiencies and drawn considerable interest as a next-generation solar energy technology. The rapid development has centered around lead-based derivatives, and concerns regarding the toxicity of lead has sparked interest in low toxicity and more environmentally friendly perovskite derivatives. In this regime tin (Sn) is regarded as a prominent alternative owing to the ideal bandgap and reduced toxicity exhibited by Sn-halide perovskites. …


Fabrication, Characterization And Applications Of Highly Conductive Wet-Spun Pedot:Pss Fibers, Ruben Sarabia Riquelme Jan 2020

Fabrication, Characterization And Applications Of Highly Conductive Wet-Spun Pedot:Pss Fibers, Ruben Sarabia Riquelme

Theses and Dissertations--Chemical and Materials Engineering

Smart electronic textiles cross conventional uses to include functionalities such as light emission, health monitoring, climate control, sensing, storage and conversion of energy, etc. New fibers and yarns that are electrically conductive and mechanically robust are needed as fundamental building blocks for these next generation textiles.

Conjugated polymers are promising candidates in the field of electronic textiles because they are made of earth-abundant, inexpensive elements, have good mechanical properties and flexibility, and can be processed using low-cost large-scale solution processing methods. Currently, the main method to fabricate electrically conductive fibers or yarns from conjugated polymers is the deposition of the …


Ab Initio Investigation On The Surface Chemistry Of Functionalized Titania Membranes, Evan Hyde Jan 2020

Ab Initio Investigation On The Surface Chemistry Of Functionalized Titania Membranes, Evan Hyde

Theses and Dissertations--Chemical and Materials Engineering

Titania (titanium dioxide) is a metal oxide which has recently been investigated as a photocatalyst, most commonly for use in hydrolysis, which absorbs mostly in the UV range. However, the range of absorption can be shifted to fall within the visible light range either by doping or by functionalizing the surface with atomic or molecular adsorbates. Over the course of this research, a series of Density Functional Theory (DFT) calculations are performed to ascertain the effects of these different methods on the photocatalytic performance of titania. While the effects of nitrogen doping and oxygen vacancies are well known, more recent …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang May 2019

Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang

Chemistry Faculty Publications

Rigid three-dimensional (3D) polycyclic aromatic hydrocarbons (PAHs), in particular 3D nanographenes, have garnered interest due to their potential use in semiconductor applications and as models to study through-bond and through-space electronic interactions. Herein we report the development of a novel 3D-symmetric rylene imide building block, triperyleno[3,3,3]propellane triimides (6), that possesses three perylene monoimide subunits fused on a propellane. This building block shows several promising characteristics, including high solubility, large π-surfaces, electron-accepting capabilities, and a variety of reactive sites. Further, the building block is compatible with different reactions to readily yield quasi-D3h symmetric nanostructures (9, …


Design And Process Of 3d-Printed Parts Using Composite Theory, Jordan Garcia Jan 2019

Design And Process Of 3d-Printed Parts Using Composite Theory, Jordan Garcia

Theses and Dissertations--Mechanical Engineering

3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, it is observed that the procedures used in 3D printing differ substantially among the printers and from those used in conventional manufacturing. In this thesis, the mechanical properties of engineering products fabricated by 3D printing were comprehensively evaluated and then compared with those made by conventional manufacturing. Three open-source 3D printers, i.e., the Flash Forge Dreamer, the Tevo Tornado, and the Prusa, were used to fabricate the …


The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock Jan 2019

The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock

Theses and Dissertations--Chemical and Materials Engineering

Ceria (cerium oxide) nanomaterials, or nanoceria, have commercial catalysis and energy storage applications. The cerium atoms on the surface of nanoceria can store or release oxygen, cycling between Ce3+ and Ce4+, and can therefore act as a therapeutic to relieve oxidative stress within living systems. Nanoceria dissolution is present in acidic environments in vivo. In order to accurately define the fate of nanoceria in vivo, nanoceria dissolution or stabilization is observed in vitro using acidic aqueous environments.

Nanoceria stabilization is a known problem even during its synthesis; in fact, a carboxylic acid, citric acid, is …


A Simple And Robust Approach To Reducing Contact Resistance In Organic Transistors, Zachary A. Lamport, Katrina J. Barth, Hyunsu Lee, Eliot Gann, Sebastian Engmann, Hu Chen, Martin Guthold, Iain Mcculloch, John E. Anthony, Lee J. Richter, Dean M. Delongchamp, Oana D. Jurchescu Dec 2018

A Simple And Robust Approach To Reducing Contact Resistance In Organic Transistors, Zachary A. Lamport, Katrina J. Barth, Hyunsu Lee, Eliot Gann, Sebastian Engmann, Hu Chen, Martin Guthold, Iain Mcculloch, John E. Anthony, Lee J. Richter, Dean M. Delongchamp, Oana D. Jurchescu

Chemistry Faculty Publications

Efficient injection of charge carriers from the contacts into the semiconductor layer is crucial for achieving high-performance organic devices. The potential drop necessary to accomplish this process yields a resistance associated with the contacts, namely the contact resistance. A large contact resistance can limit the operation of devices and even lead to inaccuracies in the extraction of the device parameters. Here, we demonstrate a simple and efficient strategy for reducing the contact resistance in organic thin-film transistors by more than an order of magnitude by creating high work function domains at the surface of the injecting electrodes to promote channels …


Water Processable N-Type Organic Semiconductor, Ruben S. Riquelme, Matthew Collins Weisenberger, Camila F. Gomez Nov 2018

Water Processable N-Type Organic Semiconductor, Ruben S. Riquelme, Matthew Collins Weisenberger, Camila F. Gomez

Center for Applied Energy Research Faculty Patents

The present invention concerns a water-processable n-type semiconductor comprised of polyvinylpyrrolidone (PVP), carbon nanotubes (CNTs) and poly(ethyleneimine) (PEI). The semiconductors are prepared by providing PVP and CNTs in a hydrophilic slurry and dispersing therein small amounts of PEI.


Magnetic Ordering In A Vanadium-Organic Coordination Polymer Using A Pyrrolo[2,3-D:5,4-D']Bis(Thiazole)-Based Ligand, Yulia A. Getmanenko, Christopher S. Mullins, Vladimir N. Nesterov, Stephanie Lake, Chad Risko, Ezekiel Johnston-Halperin Oct 2018

Magnetic Ordering In A Vanadium-Organic Coordination Polymer Using A Pyrrolo[2,3-D:5,4-D']Bis(Thiazole)-Based Ligand, Yulia A. Getmanenko, Christopher S. Mullins, Vladimir N. Nesterov, Stephanie Lake, Chad Risko, Ezekiel Johnston-Halperin

Chemistry Faculty Publications

Here we present the synthesis and characterization of a hybrid vanadium-organic coordination polymer with robust magnetic order, a Curie temperature TC of ∼110 K, a coercive field of ∼5 Oe at 5 K, and a maximum mass magnetization of about half that of the benchmark ferrimagnetic vanadium(tetracyanoethylene)~2 (V·(TCNE)~2). This material was prepared using a new tetracyano-substituted quinoidal organic small molecule 7 based on a tricyclic heterocycle 4-hexyl-4H-pyrrolo[2,3-d:5,4-d′]bis(thiazole) (C6-PBTz). Single crystal X-ray diffraction of the 2,6-diiodo derivative of the parent C6-PBTz, showed a disordered hexyl chain and …


Application Of Cross-Linked Polyborosiloxanes And Organically Modified Boron Silicate Binders In Silicon-Containing Anodes For Lithium-Ion Batteries, Darius A. Shariaty, Dali Qian, Yang-Tse Cheng, Susan A. Odom Mar 2018

Application Of Cross-Linked Polyborosiloxanes And Organically Modified Boron Silicate Binders In Silicon-Containing Anodes For Lithium-Ion Batteries, Darius A. Shariaty, Dali Qian, Yang-Tse Cheng, Susan A. Odom

Chemistry Faculty Publications

To determine the effect of cross-linking in polymer binders on gravimetric capacity and retention in charge/discharge cycling of lithium-ion batteries containing silicon anodes, polymers with a varied chemiophysical characters have been studied as electrode binders. Here we report the utilization of cross-linked polyborosiloxanes and a boron-modified organosilicate as binders for nanoparticulate silicon-containing anodes for lithium-ion batteries. We show that highly cross-linked binders enable a large degree of capacity to be accessed and that capacity retention is greater when the electrodes are cycled in half cells. More extensive analysis of the boron-modified organosilicate is further explored.


Surface Engineering And Monomer Design For Light-Mediated Ring Opening Metathesis Polymerization, Ishan A. Fursule Jan 2018

Surface Engineering And Monomer Design For Light-Mediated Ring Opening Metathesis Polymerization, Ishan A. Fursule

Theses and Dissertations--Chemical and Materials Engineering

Stimuli-responsive materials are changing the landscape of actuated materials, optoelectronics, molecular machines, solar cells, temporary memory storage, and biomedical materials. Specifically, photo-responsive polymers have gained acceleration in research and application since the last two decades in the form of a surface coating and micro-patterns. Light as a stimulus can be coherent, mono or polychromatic, tunable for power (intensity) and energy (wavelength), and has precise spatiotemporal control. Conventional surface coating techniques such as spin coating are unable to impart properties to the coatings in terms of sturdiness, homogeneity, uniformity over the complex surface, post deposition modification, and process efficiency. Also, in …


Morphological And Energetic Effects On Charge Transport In Conjugated Polymers And Polymer-Nanowire Composites, Zhiming Liang Jan 2018

Morphological And Energetic Effects On Charge Transport In Conjugated Polymers And Polymer-Nanowire Composites, Zhiming Liang

Theses and Dissertations--Chemistry

Organic semiconductors have wide applications in organic-based light-emitting diodes, field-effect transistors, and thermoelectrics due to the easily modified electrical and optical properties, excellent mechanical flexibility, and solution processability. To fabricate high performance devices, it is important to understand charge transport mechanisms, which are mainly affected by material energetics and material morphology. Currently it is difficult to control the charge transport properties of new organic semiconductors and organic-inorganic nanocomposites due to our incomplete understanding of the large number of influential variables. Molecular doping of π-conjugated polymers and surface modification of nanowires are two means through which charge transport can be manipulated. …


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to …


Mixed Matrix Flat Sheet And Hollow Fiber Membranes For Gas Separation Applications, Nicholas W. Linck Jan 2018

Mixed Matrix Flat Sheet And Hollow Fiber Membranes For Gas Separation Applications, Nicholas W. Linck

Theses and Dissertations--Chemical and Materials Engineering

Mixed matrix membranes (MMM) offer one potential path toward exceeding the Robeson upper bound of selectivity versus permeability for gas separation performance while maintaining the benefits of solution processing. Many inorganic materials, such as zeolites, metal-organic frameworks, or carbon nanotubes, can function as molecular sieves, but as stand-alone membranes are brittle and difficult to manufacture. Incorporating them into a more robust polymeric membrane matrix has the potential to mitigate this issue.

In this work, phase inversion polymer solution processing for the fabrication and testing of asymmetric flat sheet mixed matrix membranes was employed with CVD-derived multiwall carbon nanotubes (MWCNTs) dispersed …


Note On The Rate And Energy Efficiency Limits For Additive Manufacturing, Timothy Gutowski, Sheng Jiang, Daniel Cooper, Gero Corman, Michael Hausmann, Jan-Anders Manson, Timo Schudeleit, Konrad Wegener, Matias Sabelle, Jorge Ramos-Grez, Dusan P. Sekulic Oct 2017

Note On The Rate And Energy Efficiency Limits For Additive Manufacturing, Timothy Gutowski, Sheng Jiang, Daniel Cooper, Gero Corman, Michael Hausmann, Jan-Anders Manson, Timo Schudeleit, Konrad Wegener, Matias Sabelle, Jorge Ramos-Grez, Dusan P. Sekulic

Mechanical Engineering Faculty Publications

We review the process rates and energy intensities of various additive processing technologies and focus on recent progress in improving these metrics for laser powder bed fusion processing of metals, and filament and pellet extrusion processing of polymers and composites. Over the last decade, observed progress in raw build rates has been quite substantial, with laser metal processes improving by about 1 order of magnitude, and polymer extrusion processes by more than 2 orders of magnitude. We develop simple heat transfer models that explain these improvements, point to other possible strategies for improvement, and highlight rate limits. We observe a …


Functionalization Of Silver Nanoparticles On Membranes And Its Influence On Biofouling, Conor G. Sprick Jan 2017

Functionalization Of Silver Nanoparticles On Membranes And Its Influence On Biofouling, Conor G. Sprick

Theses and Dissertations--Chemical and Materials Engineering

Ultrafiltration (UF) processes are often used as pretreatment before more retentive/costly processes, such as nanofiltration and reverse osmosis. This study shows the results of low-biofouling nanocomposite membranes, loaded with casein-coated silver nanoparticles (casein-Ag-NPs). Membranes were cast and imbedded with Ag-NPs using two approaches, physical blending of Ag-NPs in the dope solution (PAg-NP/CA membranes) and chemical attachment of Ag-NPs to cast membranes (CAg-NP/CA membranes), to determine their biofouling control properties. The functionalization of Ag-NPs onto the CA membranes was achieved via attachment with functionalized thiol groups with the use of glycidyl methacrylate (GMA) and cysteamine chemistries. The …


Effect Of Interlayers On Mechanical Properties And Interfacial Stress Transfer Of 2d Layered Graphene-Polymer Nanocompsites, Colton C. Roach Jan 2017

Effect Of Interlayers On Mechanical Properties And Interfacial Stress Transfer Of 2d Layered Graphene-Polymer Nanocompsites, Colton C. Roach

Theses and Dissertations--Mechanical Engineering

Graphene, a monolayer of sp2-hybridized carbon atoms arranged in a two-dimensional (2D) lattice, is one of the most important 2D nanomaterials and has attracted tremendous attentions due to its unique geometric characteristics and exceptional mechanical properties. One of the most promising applications of this 2D nanomaterial is in polymer nanocomposites, in which the ultra-stiff, ultra-thin graphene layers function as reinforcement fillers. However, two significant questions remain to be answered: (1) whether the mechanical behaviors of 2D graphene reinforced nanocomposites can be analyzed by the convention composite theory, which is developed primarily for one-dimensional (1D) fiber-type of fillers, and …


Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei Jan 2017

Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei

Theses and Dissertations--Biomedical Engineering

Common biodegradable polyesters such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL) are used as drug delivery vehicles for tissue regenerative applications. However, they are typically bioinert, with drug loading limitations. Polymerizing the active agent or precursor into its respective biodegradable polymer would control drug loading via molar ratios of drug to initiator used for synthesis. Simvastatin was chosen due to its favorable anti-inflammatory, angiogenic, and osteogenic properties. In addition, its lactone ring lends itself to ring-opening polymerization and, consequently, the synthesis of poly(simvastatin) with controlled simvastatin release.

Simvastatin was first polymerized with a 5kDa methyl-terminated poly(ethylene glycol) …


The Limits & Effects Of Draw On Properties And Morphology Of Pan-Based Precursor And The Resultant Carbon Fibers, Sarah Edrington Jan 2017

The Limits & Effects Of Draw On Properties And Morphology Of Pan-Based Precursor And The Resultant Carbon Fibers, Sarah Edrington

Theses and Dissertations--Mechanical Engineering

The process, structure, and property relationship of PAN fiber as a precursor to carbon fiber was studied. The limitations of stable spinning and property improvement associated with hot draw in solution spinning were found and quantified. Conditions were varied to generated precursor fiber up to the limit of draw, from which actual samples were collected for thermal conversion to carbon fiber. Samples of PAN and subsequent carbon fiber were characterized using tensile testing and x-ray analysis. The effects of draw on modulus and break stress, as well as the orientation of the crystalline structure of both parent precursor and resultant …


Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra Jan 2017

Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra

Theses and Dissertations--Chemical and Materials Engineering

Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes.

Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these …


Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov Nov 2016

Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov

Chemistry Faculty Publications

Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by …


Biopolymeric Mucin And Synthetic Polymer Analogs: Their Structure, Function And Role In Biomedical Applications, Sundar Prasanth Authimoolam, Thomas D. Dziubla Mar 2016

Biopolymeric Mucin And Synthetic Polymer Analogs: Their Structure, Function And Role In Biomedical Applications, Sundar Prasanth Authimoolam, Thomas D. Dziubla

Chemical and Materials Engineering Faculty Publications

Mucin networks are viscoelastic fibrillar aggregates formed through the complex self-association of biopolymeric glycoprotein chains. The networks form a lubricious, hydrated protective shield along epithelial regions within the human body. The critical role played by mucin networks in impacting the transport properties of biofunctional molecules (e.g., biogenic molecules, probes, nanoparticles), and its effect on bioavailability are well described in the literature. An alternate perspective is provided in this paper, presenting mucin’s complex network structure, and its interdependent functional characteristics in human physiology. We highlight the recent advances that were achieved through the use of mucin in diverse areas of bioengineering …