Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles

Discipline
Keyword
Publication Year

Articles 1 - 17 of 17

Full-Text Articles in Other Materials Science and Engineering

Nanoclays‑Containing Bio‑Based Packaging Materials: Properties, Applications, Safety, And Regulatory Issues, Kalpani Y. Perera, Maille Hopkins, Amit K. Jaiswal Dr, Swarna Jaiswal Feb 2023

Nanoclays‑Containing Bio‑Based Packaging Materials: Properties, Applications, Safety, And Regulatory Issues, Kalpani Y. Perera, Maille Hopkins, Amit K. Jaiswal Dr, Swarna Jaiswal

Articles

Food packaging is an important concept for consumer satisfaction and the increased shelf life of food products. The introduction of novel food packaging materials has become an emerging trend in recent years, which could be mainly due to environmental pollution caused by plastic packaging and to reduce food waste. Recently, numerous studies have been carried out on nanoclays or nanolayered silicate to be used in packaging material development as reinforcing filler composites. Different types of nanoclays have been used as food packaging materials, while montmorillonite (MMT), halloysite, bentonite (BT), Cloisite, and organically modified nanoclays have become of great interest. The …


Clove Essential Oil And Nanoclays-Based Active Food Packaging, Kalpani Y. Perera, Shubham Sharma, Amit K. Jaiswal, Swarna Jaiswal Dec 2022

Clove Essential Oil And Nanoclays-Based Active Food Packaging, Kalpani Y. Perera, Shubham Sharma, Amit K. Jaiswal, Swarna Jaiswal

Articles

Active food packaging materials enhance the shelf-life of food products while reducing food waste. The current study aims to develop a biodegradable active food packaging material. The food packaging material was developed with the incorporation of clove essential oil, sodium alginate, gelatin, and nanoclay films were prepared. The influences of nanoclay and clove on the surface, optical, mechanical, chemical, barrier, and pH-indicating properties were studied. The lightness and yellowness increased by 1.06 folds and 3.34 folds when compared to clove (control), respectively. The UV barrier property 0.08±0.01nm in all films, while 8.37 folds reduction in transparency has been observed as …


Nanoclays And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Swarna Jaiswal, Amit K. Jaiswal, Shubham Sharma Dec 2022

Nanoclays And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Swarna Jaiswal, Amit K. Jaiswal, Shubham Sharma

Articles

Bionanocomposite packaging eco-friendly alternatives with enhanced characteristics. This study aimed to develop a bionanocomposite intelligent packaging. Sodium alginate, gelatin, Curcumin (Cur), glycerol, and Nanoclay (NC) films were prepared. The influences of nanoclay and curcumin on the surface, optical, mechanical, chemical, barrier, and pH-indicating properties were studied. The results showed that the lightness of films was reduced by 1.28 folds compared to NC (control) film, while the yellowness of films increased by 5.82 folds. Film transparency was reduced by 9.3 folds and a 3.46 folds increase in UV barrier properties was observed compared to NC (control) film. The highest tensile strength …


Cold Plasma Technology In Food Packaging, Kalpani Y. Perera, Jack Prendeville, Amit K. Jaiswal, Swarna Jaiswal Dec 2022

Cold Plasma Technology In Food Packaging, Kalpani Y. Perera, Jack Prendeville, Amit K. Jaiswal, Swarna Jaiswal

Articles

Cold plasma (CP) is an effective strategy to alter the limitations of biopolymer materials for food packaging applications. Biopolymers such as polysaccharides and proteins are known to be sustainable materials with excellent film-forming properties. Bio-based films can be used as an alternative to traditional plastic packaging. There are limitations to biopolymer packaging materials such as hydrophobicity, poor barrier, and thermos-mechanical properties. For this reason, biopolymers must be modified to create a packaging material with the desired applicability. CP is an effective method to enhance the functionality and interfacial features of biopolymers. It etches the film surface allowing for better adhesion …


Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal Nov 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosanalginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


Sodium Alginate, Nanoclay And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Máille Hopkins, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal Nov 2022

Sodium Alginate, Nanoclay And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Máille Hopkins, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

Bionanocomposite food packaging contains materials of biological origin which display high-performance activity when compared to biopolymers and are eco-friendly alternatives to conventional packaging materials. Intelligent packaging monitors the condition of the food or environment surrounding the food and communicates changes to the consumer. This study aimed to develop a bionanocomposite intelligent packaging material by utilising sodium alginate, nanoclay and curcumin. Sodium alginate (2 W/V% SA) film incorporated with 0.3 W/V% curcumin (Cur), glycerol, and nanoclay (NC) in various concentrations (0, 0.5, 1 and 2 W/V %) was prepared using the solvent casting method. The influences of nanoclay and curcumin on …


Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal May 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosan-alginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


Biodegradable Nanocomposite Multifunctional Packaging Film For Fruits, Kalpani Y. Perera, Shubham Sharma, Dileswar Pradhan, Amit Jaiswal, Swarna Jaiswal Sep 2021

Biodegradable Nanocomposite Multifunctional Packaging Film For Fruits, Kalpani Y. Perera, Shubham Sharma, Dileswar Pradhan, Amit Jaiswal, Swarna Jaiswal

Articles

Biopolymers have been used in food packaging in recent years due to high pollution rates and decreased biodegradation of synthetic polymers. Chitosan (CH) and Sodium alginate (SA) are both biodegradable biopolymers with excellent film forming capability. TiO2 nanoparticles have high mechanical strength, degradation ability and antimicrobial properties, which are beneficial in food packaging. The aim of the current work is to develop the biodegradable multifunctional nanocomposite film for fruit (i.e., Pear) packaging applications. Bionanocomposite film was prepared by solvent casting method using CH-SA and various concentrations of TiO2. The multifunctional properties such as UV barrier, thermal, water retention, mechanical, chemical, …


Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen Jun 2021

Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen

Articles

Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO2 emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and induction heating, can heal cracks with melted binder and aged binder rejuvenation, and the synergistic effect of the two technologies shows significant advantages in healing efficiency over the single self-healing method. This study explores the fatigue life extension prospect of the combined healing system in porous asphalt. To this aim, porous asphalt (PA) test specimens with …


Bio-Binder—Innovative Asphalt Technology, Amir Tabakovic Dec 2020

Bio-Binder—Innovative Asphalt Technology, Amir Tabakovic

Articles

The global road network spans 16.3 million km [1], of which 5 million km is in the EU. These road networks fulfil major economic and social goals by facilitating the movement of goods and people throughout the EU, and are therefore of the utmost importance to the economic and social life of the EU [2]. National governments invest heavily in their road networks, e.g., in 2014, EUR 53.33 billion was invested in the development and maintenance of the EU road network [3]. Each year, the world produces 1.6 trillion tonnes of asphalt [4], of which 218 million tonnes is produced …


Optimizing The Valorization Of Industrial By-Products For The Induction Healing Of Asphalt Mixtures, Amir Tabakovic, Marta Vila-Cortavitarte, Daniel Jato-Espino, Daniel Castro-Fresno Aug 2019

Optimizing The Valorization Of Industrial By-Products For The Induction Healing Of Asphalt Mixtures, Amir Tabakovic, Marta Vila-Cortavitarte, Daniel Jato-Espino, Daniel Castro-Fresno

Articles

Self-healing within asphalt pavements is the process whereby road cracks can be repaired automatically when thermal and mechanical conditions are met. To accelerate and improve this healing process, metal particles are added to asphalt mixtures. However, thisapproach is costly both in economic and environmental terms due to the use of virgin metallic particles. So, even though the self-healing of asphalt mixtures has been widely addressed in experimental terms over the years, there is a lack of research aimed at modelling this phenomenon, especially with the purpose of optimizing the use of metal particles through the valorization of industrial by-products. As …


The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen Feb 2019

The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen

Articles

Induction healing is a proven technology which is able to improve the self‐healing capacity of asphalt concrete. Healing is achieved via electromagnetic current produced by passing induction machine, where steel asphalt constituents heat up which in turn soften the bitumen in the asphalt layer, allowing it to flow and close cracks, repairing the damage. This paper reports on the study which investigated the influence of ageing on the healing capacity of Porous Asphalt (PA) concrete. Porous Asphalt concrete mix was prepared first, then subjected to an accelerated (laboratory) ageing process using a ventilated oven. In order to further evaluate the …


Optimization Of The Calcium Alginate Capsules For Self-Healing Asphalt, Shi Xu, Amir Tabakovic, Xueyan Liu, Damian Palin, Erik Schlangen Jan 2019

Optimization Of The Calcium Alginate Capsules For Self-Healing Asphalt, Shi Xu, Amir Tabakovic, Xueyan Liu, Damian Palin, Erik Schlangen

Articles

Featured Application: This self-healing technology for asphalt pavements has the potential to greatly disrupt asphalt production methods (which have been stable over the past 100 years).This paper presents a development process of ‘calcium-alginate microcapsules encapsulating an asphalt bitumen rejuvenator’. The encapsulated rejuvenator is released when required (on demand) which rejuvenates the aged binder. Once crack is initiated and starts propagating it encounters a microcapsule, energy at tip of the crack opens the microcapsule, releasing the rejuvenator (healing agent). The rejuvenator will infuse into the aged binder soften it, allowing to flow, two broken edges to get into a contact and …


A Multiscale Model Of Protein Adsorption On A Nanoparticle Surface, David Power, Ian Rouse, Stefano Poggio, Erik Brandt, Hender Lopez, Alexander Lyubartsev, Vladimir Lobaskin Jan 2019

A Multiscale Model Of Protein Adsorption On A Nanoparticle Surface, David Power, Ian Rouse, Stefano Poggio, Erik Brandt, Hender Lopez, Alexander Lyubartsev, Vladimir Lobaskin

Articles

We present a methodology to quantify the essential interactions at the interface between inorganic solid nanoparticles (NPs) and biological molecules. Our model is based on pre-calculation of the repetitive contributions to the interaction from molecular segments, which allows us to efficiently scan a multitude of molecules and rank them by their adsorption affinity. The interaction between the biomolecular fragments and the nanomaterial are evaluated using a systematic coarse-graining scheme starting from all-atom molecular dynamics simulations. The NPs are modelled using a two-layer representation, where the outer layer is parameterized at the atomistic level and the core is treated at the …


Case Studies Of Cavity And External Wall Insulation Retrofitted Under The Irish Home Energy Saving Scheme: Technical Analysis And Occupant Perspectives, Aimee Byrne, Gerard Byrne, Garrett O'Donnell, Anthony Robinson Jan 2016

Case Studies Of Cavity And External Wall Insulation Retrofitted Under The Irish Home Energy Saving Scheme: Technical Analysis And Occupant Perspectives, Aimee Byrne, Gerard Byrne, Garrett O'Donnell, Anthony Robinson

Articles

The residential sector represents 27% of primary energy consumption in Ireland. This paper examines the case study of the Irish government’s national grant scheme to encourage energy efficiency retrofit in private housing. That is the Home Energy Saving (HES) Scheme, later rebranded the Better Energy: Homes (BEH) Scheme. The methodology involved monitoring several homes immediately before and after retrofit alongside discussions with occupants. The examination focused on specific measures commonly introduced through the HES/BEH programme − cavity and external wall insulation. It has been found that a significant decrease in heat loss through the walls was measured in all cases. …


Transient And Quasi-Steady Thermal Behaviour Of A Building Envelope Due To Retrofitted Cavity Wall And Ceiling Insulation, Aimee Byrne, Gerard Byrne, Anna Davies, Anthony Robinson Jan 2013

Transient And Quasi-Steady Thermal Behaviour Of A Building Envelope Due To Retrofitted Cavity Wall And Ceiling Insulation, Aimee Byrne, Gerard Byrne, Anna Davies, Anthony Robinson

Articles

Accurate understanding of the thermal behaviour of building components is essential for predicting heat-ing or cooling needs and facilitates the implementation of more successful energy saving strategies and retrofits. This paper focuses on a specific measure commonly introduced through the residential energy efficiency retrofit programmes in Ireland–insulation. Traditionally, assessments of the performance of building envelopes have been based on assumed thermal resistances of the materials involved, labora-tory tests and computer modelling. The aim of the present work is to investigate the in situ thermal behaviour of a case study building and its components under transient and quasi-steady environmental conditions, comparing …


Preparation Of Magnetic Nanoparticles And Their Assemblies Using A New Fe(Ii) Alkoxide Precursor, Suresh Pillai, Grainne Biddlecombe, Yurii Gun’Ko, John Kelly, J. Michael Coey, Alexis Douvalis Jan 2001

Preparation Of Magnetic Nanoparticles And Their Assemblies Using A New Fe(Ii) Alkoxide Precursor, Suresh Pillai, Grainne Biddlecombe, Yurii Gun’Ko, John Kelly, J. Michael Coey, Alexis Douvalis

Articles

No abstract provided.