Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Massachusetts Amherst

Discipline
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 16 of 16

Full-Text Articles in Other Materials Science and Engineering

Source Data For Xueyan Feng, Michael S. Dimitriyev & Edwin L. Thomas, "Soft, Malleable Double Diamond Twin", Xueyan Feng, Michael S. Dimitriyev, Edwin L. Thomas Jan 2023

Source Data For Xueyan Feng, Michael S. Dimitriyev & Edwin L. Thomas, "Soft, Malleable Double Diamond Twin", Xueyan Feng, Michael S. Dimitriyev, Edwin L. Thomas

Data and Datasets

Source data and code for Xueyan Feng, Michael S. Dimitriyev & Edwin L. Thomas, "Soft, malleable double diamond twin"


Direct Printing/Coating/Plating Of Key Components For Electronic Devices, Xiyu Hu Jun 2021

Direct Printing/Coating/Plating Of Key Components For Electronic Devices, Xiyu Hu

Doctoral Dissertations

Miniaturization has been a technological trend for several decades for electronic devices. From the practical point of view, the successful miniaturization of fully integrated systems mainly depends on their components. This dissertation examines the inkjet printing of copper oxide inks on flexible substrates for applications in microfluidic valving systems. We expand the knowledge of low-cost and high-performance electrowetting valves and fabricate the microfluidic device for fluidic control, which is necessary to enable the next-generation microfluidic devices. In addition, we also study the electromagnetic interference (EMI) shielding material, which is a crucial part of electronic devices. The basic theory of EMI …


Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni Jun 2021

Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni

Doctoral Dissertations

Thin-walled structures have received a lot of interest during the last years due to their light weight, cost efficiency, and ease in fabrication and transportation, along with their high strength and stiffness. This dissertation focuses on the mechanical performance of thin-walled metallic structures from cold-formed steel shear walls and connections (PART I) to plate-lattice architected materials (PART II) via computational, experimental, and probabilistic methods. Cold-formed steel (CFS) shear walls subjected to seismic loads is the focus of PART I of this dissertation. An innovative three-dimensional shell finite element model of oriented strand board (OSB) sheathed CFS shear walls is introduced …


Surface Driven Flows : Liquid Bridges, Drops And Marangoni Propulsion, Samrat Sur Mar 2020

Surface Driven Flows : Liquid Bridges, Drops And Marangoni Propulsion, Samrat Sur

Doctoral Dissertations

Molecules sitting at a free liquid surface against vacuum or gas have weaker binding than molecules in the bulk. The missing (negative) binding energy can therefore be viewed as a positive energy added to the surface itself. Since a larger area of the surface contains larger surface energy, external forces must perform positive work against internal surface forces to increase the total area of the surface. Mathematically, the internal surface forces are represented by surface tension, defined as the normal force per unit of length. One common manifestation of surface tension is the difference in pressure it causes across a …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Interfacial Interactions And Dynamic Adhesion Of Synthetic And Living Colloids In Flow, Molly Shave Aug 2019

Interfacial Interactions And Dynamic Adhesion Of Synthetic And Living Colloids In Flow, Molly Shave

Doctoral Dissertations

This thesis focuses on the interactions between flowing particles and a surface, where hydrodynamics couples with chemical interactions in order to modify the way they come into play. First this thesis shows how electrostatic chemical heterogeneities on a flowing particle affect the interactions with a wall, using a highly tunable electrostatically heterogenous system produced by adsorbing small amounts of cationic polyelectrolytes onto silica particles in suspension and studying their behavior in flow over the fixed surface. By comparing this behavior to a system with equivalent chemical heterogeneity on a channel wall it was shown that the rotation of a particle …


Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis Jul 2019

Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis

Doctoral Dissertations

Structural systems are potentially subjected to damage initiating scenarios throughout the course of their service time. Depending on the nature and extent of the damaging event, they may experience significant reduction or even complete loss of their mechanical performance. This dissertation delves into the mechanics of structural systems under the notion of missing members from their domain, investigating types of structural systems: a) multi-story steel framed buildings, and b) materials with a truss-lattice microstructure. Part I of the dissertation investigates the performance of multi-story steel framed buildings under a column removal scenario, developing an analytical framework for their quasi-static robustness …


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang Mar 2019

Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang

Doctoral Dissertations

Proteins have intrinsic molecular properties that are highly useful for materials applications, especially for biomaterials. My research has focused on translating these molecular properties to materials surface behavior. In one approach, I developed a fluorous-based thermal treatment strategy to generate stable thin films from a variety of naturally abundant proteins. The different surface properties generated from the choice of protein were utilized to modulate cell-surface interactions, prevent bacterial adhesions, and control drug loading/release. I have used nanoimprint lithography to generate patterned protein films for cell alignment. Coupling with inkjet printing deposition, I have fabricated mixed protein films with spatial and …


The Investigation Of Surface Barrier During Molecular Transport In Hierarchical Zeolites, Xiaoduo Qi Mar 2019

The Investigation Of Surface Barrier During Molecular Transport In Hierarchical Zeolites, Xiaoduo Qi

Doctoral Dissertations

Hierarchical zeolites with micropore lengths on the order of nanometers have been synthesized with the aim of reducing mass transfer limitation. However, due to large external surface to volume ratios, the mass transport in these materials can be hindered by a secondary rate limitation step imposed on the external surface of the zeolites. This has led to the general phenomenon referred to as “surface barriers”, which cause the enhancement in mass transport being far lower than expected. In order to fully unlock the potential of hierarchical zeolites, it is imperative to fundamentally understand the molecular transport in these new types …


Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani Mar 2018

Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani

Doctoral Dissertations

This dissertation is comprised of six chapters. In the first chapter the motivation of this research, which was modeling the deformation behavior and strength characteristics of soils under internal erosion, is briefly explained. In the second chapter a micromechanis-based stress-strain model developed for prediction of sand-silt mixtures behavior is presented. The components of the micromechanics-based model are described and undrained behavior of six different types of sand-silt mixtures is predicted for several samples with different fines contents. The need for a more comprehensive compression model for sand-silt mixtures is identified at the end of this chapter. This desired compression model …


Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi Nov 2017

Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi

Doctoral Dissertations

Fuel cells have been demonstrated to be promising power generation devices to address the current global energy and environmental challenges. One of the many barriers to commercialization is the cost of precious catalysts needed to achieve sufficient power output. Platinum-based materials play an important role as electrocatalysts in energy conversion technologies. In order to improve catalytic efficiency and facilitate rational design and development of new catalysts, structure–function relationships that underpin catalytic activity must be understood at a fundamental level. First, we present a systematic analysis of CO adsorption on Pt nanoclusters in the 0.2-1.5 nm size range with the aim …


Enzyme Stabilization In Hierarchical Biocatalytic Food Packaging And Processing Materials, Dana Erin Wong Jul 2016

Enzyme Stabilization In Hierarchical Biocatalytic Food Packaging And Processing Materials, Dana Erin Wong

Doctoral Dissertations

The partnership of biocatalysts and solid support materials provides many opportunities for bioactive packaging and bioprocessing aids beneficial to the agricultural and food industries. Biocatalysis, or reactions modulated by enzymes, allows bioactive materials to assist in bringing a substrate to product. Enzymes are proteins which catalyze reactions by lowering the activation energy required to drive the production of a desired product. Enzymes are commonly utilized in food processing as catalysts with specificity in order to enhance product quality through the production of beneficial food components, and to break down undesirable components that may be harmful or may decrease product quality. …


Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz Mar 2016

Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz

Masters Theses

Solar technology has been a major topic in sustainable design for many years. In the last five years, however, the solar technology industry has seen a rapid growth in installations and technological advances in cell design. Combined with a rapidly declining overall system cost, the idea of introducing solar technology into a wider range of applications is becoming a focus for engineers and scientists around the world. So many variables which alter solar energy production, such as the sun and surrounding environment, determine whether a solar design is beneficial. This thesis presents a bridge deck surface integrated with solar cells …


Rational Development Of Solid Lewis Acid Catalysts For Biomass Conversion, Chun-Chih Chang Mar 2016

Rational Development Of Solid Lewis Acid Catalysts For Biomass Conversion, Chun-Chih Chang

Doctoral Dissertations

The need for sustainable production of everyday materials in addition to declining reserves of petroleum-based feedstocks has motivated research into the production of renewable aromatic chemicals from biomass. We have proposed a multistep pathway to produce renewable p-xylene from lignocellulosic biomass using heterogeneous catalysts. The pathway includes formation of glucose by saccharification of cellulose, isomerization of glucose into fructose, dehydration/hydrogenolysis for production of 2,5-dimethylfuran (DMF), and final step for producing p-xylene from reacting DMF with ethylene. Lewis acid zeolite catalysts (e.g. Sn-BEA, a tin containing molecular sieve with zeolite BEA structure) exhibited critical roles in the pathway because …


Patterned Well-Ordered Mesoporous Silica Films For Device Fabrication, Todd A. Crosby Jan 2009

Patterned Well-Ordered Mesoporous Silica Films For Device Fabrication, Todd A. Crosby

Masters Theses 1911 - February 2014

Developing effective methods of generating thin metal oxide films are important for sensing and separations applications. An obstacle to device fabrication is controlling the size and spatial orientation of domain level pores while retaining the ability to generate arbitrary device level patterns. Well-ordered hexagonally packed cylindrical pores were created by taking advantage of block copolymer self-assembly followed by selective condensation of silica precursors using supercritical carbon dioxide as the solvent. It was possible to control the pore size by choosing PEO-PPO-PEO (Pluronic® series) triblock copolymers of differing molecular weights.

These processes were then incorporated with conventional lithographic techniques to generate …