Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 76

Full-Text Articles in Other Materials Science and Engineering

Experimental And Simulation Study Of Reactive Silver Ink Droplet Evaporation, Weipeng Zhang Oct 2023

Experimental And Simulation Study Of Reactive Silver Ink Droplet Evaporation, Weipeng Zhang

Electronic Thesis and Dissertation Repository

The evaporation of particle-free silver ink droplets on heated substrates directly impacts the morphology of the resultant silver particles and films. In this thesis, COMSOL Multiphysics simulations of the solvent (water-ethylene glycol mixture) droplet evaporation process are used to explain the microflows, mass transfers, and heat distribution responsible for the experimental observations. The reactive ink incorporates fluoro-surfactant FS-31 and poly (acrylamide) (PAM) to suppress the coffee-ring effect that negatively impacts the electrical conductivity. Experiments show that the droplet evaporation process results in varied silver particle morphology, depending on the locations within the droplet, leading to uneven surfaces. Large particles (3 …


Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons Jan 2023

Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons

UNF Graduate Theses and Dissertations

This thesis involves the fabrication and characterization of devices made from two different superconducting materials: yttrium barium copper oxide (YBCO), a high-TC complex oxide, and niobium nitride (NbN), a low-TC transition metal nitride. Both types of devices are fabricated on strontium titanate substrates, which provides a good lattice match to YBCO and also an extremely large permittivity at low temperature. We demonstrate that wet etching of YBCO thin films via bromine can be a viable microfrabriation technique for the material. Using approximately 35 nm thick epitaxially grown YBCO on an STO substrate, we were able to fabricate YBCO “microwires” with …


Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere Dec 2022

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere

All Dissertations

Carbon fibers have the highest strength and modulus among all known fibers and are used as reinforcements in high-performance composites [1]. Carbon fibers also have a very low density relative to metals. Therefore, carbon fibers possess ultrahigh specific strength and modulus, which make them desirable for high-performance light-weight composites. A vast majority of commercial carbon fibers are produced from PAN precursors that are expensive, which limits the use of PAN-derived carbon fibers to aerospace applications (e.g., airplanes). However, for costsensitive applications, there is a need for low-cost, moderate performance carbon fibers. Lignin is a low-cost by-product of pulping and biorefining …


Detection Of Trace Heavy Metals In Water: Development Of Electrochemical Sensors, Quang Lam, Joel Mututeke Apr 2022

Detection Of Trace Heavy Metals In Water: Development Of Electrochemical Sensors, Quang Lam, Joel Mututeke

Symposium of Student Scholars

The presence of heavy metals in our ecosystem poses significant ecological and physiological consequences. As a result, numerous techniques are developed for the detection of contaminants in aqueous solutions. However, early and trace detection of such contaminants still remains a challenge. Amongst many techniques, electrochemistry driven sensors have shown promise due to their possibility of miniaturization and low-cost. Our research investigates the use of electrically conducting polymer and atomically thin carbon materials as electrodes towards the development of electrochemical sensor. Nanocomposite electrode films have been synthesized and fabricated using in-situ polymerization technique and the relationship between number of cycles of …


Facile One-Step Hydrothermal Method For Nico2s4/Rgo Nanocomposite Synthesis For Efficient Hybrid Supercapacitor Electrodes, Ahmed Mysara, Sayed Y. Attia, Fouad I. El-Hosiny, M A. Sadek, Saad G. Mohamed, M M. Rashad Feb 2022

Facile One-Step Hydrothermal Method For Nico2s4/Rgo Nanocomposite Synthesis For Efficient Hybrid Supercapacitor Electrodes, Ahmed Mysara, Sayed Y. Attia, Fouad I. El-Hosiny, M A. Sadek, Saad G. Mohamed, M M. Rashad

Nanotechnology Research Centre

Spinel nickel-cobalt sulfide (NiCo2S4) supported on reduced graphene oxide (rGO) was fabricated through a facile one-step hydrothermal method for energy storage applications. The distribution of the NiCo2S4 nanoparticles on the rGO surface was found to improve the supercapacitive performance of the assembled device. The NiCo2S4/rGO nanocomposite exhibits outstanding electrochemical behavior with a capacity (C)/specific capacitance (Cs) of 536 C g−1/1072 F g−1 at a current density of 1 A g−1. To further investigate the electrochemical behavior of the NiCo2S4/rGO nanocomposite, a hybrid supercapacitor (HSC) was constructed utilizing a NiCo2S4/rGO positive electrode and an activated carbon …


Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell Jan 2022

Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell

Theses and Dissertations

This work centers on the development and the down-selection of nano-manufactured devices to be used in conjunction with Raman spectroscopy for probing a branched chain amino acid. The nano-manufactured devices integrate plasmonic nanoantennas for the purpose of amplifying molecular fingerprints, which are otherwise difficult to detect, through Surface Enhanced Raman Spectroscopy (SERS). Plasmonic nanostructures can be utilized for a variety of biomedical and biochemical applications to detect the characteristic fingerprint provided by Raman Spectroscopy. The nano-manufactured devices create an electric field that amplifies minute perturbations and raises the signal above background noise. This may provide a deeper understanding of signal …


Atomistic Simulation Of Desalination, Ian David Durr Aug 2021

Atomistic Simulation Of Desalination, Ian David Durr

Symposium of Student Scholars

Atomistic Simulation of Desalination

Ian Durr, Matheus Prates, and Jungkyu Park

Kennesaw State University

In this research, we investigate the desalination capacity of three-dimensional (3D) carbon nanostructures using molecular dynamics simulations. 3D carbon nanostructures proposed here will filter seawater efficiently because of their multiple layers with holes of tunable sizes. The structure is designed to be flexible, allowing mechanical deformation during daily use. The 3D carbon nanostructure will still possess high thermal conductivity, enabling easy recycle through a simple heating process. Here, we employ LAMMPS, Large-scale Atomic/MolecularMassively Parallel Simulator distributed by Sandia National Laboratories to measure salt ion flux through …


Investigation Of Bipolar Electrochemically Exfoliated Graphene For Supercapacitor Applications, Iman Khakpour Jun 2021

Investigation Of Bipolar Electrochemically Exfoliated Graphene For Supercapacitor Applications, Iman Khakpour

FIU Electronic Theses and Dissertations

Developing a reliable, simple, cost-efficient and eco-friendly method for scale-up production of high-quality graphene-based materials is essential for the broad applications of graphene. Up to now, various manufacturing methods have been employed for synthesizing high quality graphene, however aggregation and restacking has been a major issue and the majority of commercially available graphene products are actually graphite microplates. In this study, bipolar electrochemistry techniques have been used to exfoliate and deposit graphene nanosheets in a single-step process to enable high performance device application.

In the first part of this study, bipolar electrochemistry concept is utilized to design a single-step and …


Solid State Synthesis And Characterization Of Apatite Based Ceramic Waste Form For The Immobilization Of Radioactive Iodine, Md Imdadul Islam Mar 2021

Solid State Synthesis And Characterization Of Apatite Based Ceramic Waste Form For The Immobilization Of Radioactive Iodine, Md Imdadul Islam

LSU Doctoral Dissertations

The growing demand for nuclear power in the United States and worldwide is accountable for addressing the major concern of radioactive waste, involving the technical challenges of maintaining the nuclear fuel cycle and immobilizing high-level wastes for safe disposal in geological storage. The appropriate selection of waste forms for spent nuclear fuel such as fission products and radionuclides can be effective means for a feasible and sustainable nuclear fuel cycle. But highly volatile radionuclides such as iodine (129) are of specific concern due to its extraordinary long half-life (15.7 million years). Due to its poor solubility and high volatility at …


Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene Jan 2021

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene

Theses and Dissertations

In the field of photovoltaics, scientists and researchers are working fervently to produce a combination of efficient, stable, low cost and scalable devices. Methylammonium lead trihalide perovskite has attracted intense interest due to its high photovoltaic performance, low cost, and ease of manufacture. Their high absorption coefficient, tunable bandgap, low-temperature processing, and abundant elemental constituent provide innumerable advantages over other thin film absorber materials. Since the perovskite film is the most important in the device, morphology, crystallization, compositional and interface engineering have been explored to boost its performance and stability. High temperatures necessary for crystallization of organic-inorganic hybrid perovskite films …


Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel Dec 2020

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention …


Synthesis Of Novel Coo/Mnfe2o4 Heterostructured Nanoparticles And The Effects Of Variable Size And Extent Of Overgrowth On Their Magnetic Properties, Mohammad Tauhidul Islam Dec 2020

Synthesis Of Novel Coo/Mnfe2o4 Heterostructured Nanoparticles And The Effects Of Variable Size And Extent Of Overgrowth On Their Magnetic Properties, Mohammad Tauhidul Islam

MSU Graduate Theses

A combination of thermal decomposition and surfactant-assisted synthesis route was utilized to synthesize novel CoO/MnFe2O4 heterostructured nanoparticles. Four samples of varying CoO core size were synthesized with variable extent of overgrowth phase. XRD, XPS, SEM and TEM data show evidence of MnFe2O4 spinel phase overgrowth on CoO rock-salt structured nanoparticles. XPS and magnetic data reveal partial oxidation and formation of Co3O4 phase on 7 nm and 19 nm size CoO-based nanoparticles. The remaining samples having 22 nm and 34 nm dimensions show a higher percentage of FiM materials overgrowth on the …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor Aug 2020

Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor

Boise State University Theses and Dissertations

The energy-water nexus poses an integrated research challenge, while opening up an opportunity space for the development of energy efficient technologies for water remediation. Capacitive Deionization (CDI) is an upcoming reclamation technology that uses a small applied voltage applied across electrodes to electrophoretically remove dissolved ionic impurities from wastewater streams. Similar to a supercapacitor, the ions are stored in the electric double layer of the electrodes. Reversing the polarity of applied voltage enables recovery of the removed ionic impurities, allowing for recycling and reuse. Simultaneous materials recovery and water reclamation makes CDI energy efficient and resource conservative, with potential to …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka Jan 2020

Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka

Dissertations, Master's Theses and Master's Reports

First-principles calculations are performed on γ-FeSi2 nanostructures grown on Si (111) and (001) substrate. An attempt to explain the origin of emergent magnetic properties of the metastable gamma phase of iron di-silicide (γ-FeSi2) is made, which show ferromagnetic behavior on nanoscale, unlike its possible bulk form. Many papers try to explain this magnetism from factors like bulk, epitaxial strain, interface, surface, edges, and corners but doesn’t provide an analytical study for these explanations. Density functional theory is used to analyze the magnetic effects of these factors. The results for the epitaxial structures show no magnetic behavior for …


Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese May 2019

Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese

Boise State University Theses and Dissertations

Flexible thermoelectric devices are attractive power sources for the growing demand of flexible electronics and sensors. Thermoelectric generators have an advantage due to no moving parts, silent operation and constant power production with a thermal gradient.

Conventional thermoelectric devices are rigid and fabricated using complex and relatively costly manufacturing processes, presenting a barrier to increase the market share of this technology. To overcome such barriers, this work focuses on developing near ambient-temperature flexible thermoelectric generators using relatively low-cost additive manufacturing processes. A screen printable ink was developed for transforming nanoparticle ink into high-performance flexible thermoelectric generators with a peak thermoelectric …


Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni May 2019

Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni

Mechanical Engineering Undergraduate Honors Theses

Graphene is an exciting new material with many promising applications. One such application of graphene is gas sensing, when adsorbed with transition metals, notably Palladium. Therefore, it is of paramount importance to have appropriate ab initio calculations to calculate the various properties of graphene under different adsorbates and gasses. The first step in these calculations is to have a functioning base Density Functional Theory (DFT) model of pristine graphene decorated with Palladium. The computational methods described in this paper has yielded results for pristine graphene that have been confirmed many times in previous experimental and theoretical studies. Future work needs …


Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang Mar 2019

Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang

Doctoral Dissertations

Proteins have intrinsic molecular properties that are highly useful for materials applications, especially for biomaterials. My research has focused on translating these molecular properties to materials surface behavior. In one approach, I developed a fluorous-based thermal treatment strategy to generate stable thin films from a variety of naturally abundant proteins. The different surface properties generated from the choice of protein were utilized to modulate cell-surface interactions, prevent bacterial adhesions, and control drug loading/release. I have used nanoimprint lithography to generate patterned protein films for cell alignment. Coupling with inkjet printing deposition, I have fabricated mixed protein films with spatial and …


Strategies For The Stabilization Of Metal Anodes For Li And Na Metal Batteries, Yang Zhao Dec 2018

Strategies For The Stabilization Of Metal Anodes For Li And Na Metal Batteries, Yang Zhao

Electronic Thesis and Dissertation Repository

Li-metal batteries (LMBs) and Na-metal batteries (NMBs) are considered as the promising candidates to replace the conventional Li-ion batteries (LIBs) due to their high theoretical energy density. For LMBs and NMBs, Li metal and Na metal are the ultimate choices to achieve their high energy density due to the high specific capacity, low electrochemical potential and lightweight. However, as alkali metals, both Li and Na metal anodes suffer from serious challenges including 1) Li/Na dendrite formations and short circuits; 2) Low Coulombic efficiency (CE) and poor cycling performance; and 3) Infinite volume changes. This thesis mainly focuses on the design …


Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the …


Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai Nov 2018

Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai

Doctoral Dissertations

Recently, there has been a growing interest in flexible electronic devices as they are light, highly flexible, robust, and use less expensive substrate materials. Such devices are affected by thermal management issues that can reduce the device’s performance and reliability. Therefore, this work is focused on the study of the thermal properties of nanomaterials and the methods to address such issues. The goal is to enhance the effective thermal conductivity by adding nanomaterials to the polymer matrix or by structural modification of nanomaterials. The thermal conductivity of copper nanowire/polydimethylsiloxane and copper nanowire/polyurethane composites were measured and showed more than threefold …


Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan Nov 2018

Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan

Doctoral Dissertations

The electrical characterization on two-dimensional carbon-based graphene and nanodiamond materials was performed to improve charge transport properties for the label-free electrical biosensors. The charge transport in solution-gated graphene devices is affected by the impurities and disorders of the underlying dielectric interface and its interaction with the electrolytes. Advancement in field-effect ion sensing by introducing a dielectric isomorph, hexagonal boron nitride between graphene and silicon dioxide of a solution-gated graphene field-effect transistor was investigated. Increased transconductance due to increased charge carrier mobility is accompanied with larger ionic sensitivity. These findings define a standard to construct future graphene devices for biosensing and …


Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden Nov 2018

Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden

Doctoral Dissertations

The U.S. produces 5559.6 million metric tons of carbon dioxide annually, of which 21% is produced by industrial processes. Steam reforming, an industrial process that accounts for 95% of all hydrogen production in industry, produces 134.5 million metric tons of carbon dioxide or around 11% of the total carbon dioxide produced by industry. This carbon dioxide is then either emitted or goes through a sequestration process that accounts for 75% of the plant's operational costs. An alternative reaction to steam reforming is dry reforming, which utilizes carbon dioxide rather than emitting it and can be used in conjunction with current …


Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli Nov 2018

Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli

Master's Theses

Titanium-Aluminum alloys are one of the widely used alloys in multiple engineering applications. They are highly preferred in Selective Laser Melting (SLM) processes due to their low density, high melting temperature, and good strength. Segregation occurs during the solidification of most alloys and produces a non-uniform distribution of atoms. In SLM, segregation may depict the type of adhesion between the two deposited interfacial layers and the strength between the interphase between an already solidified layer and a new one, and overall, the quality of the printed part. In order to avoid segregation, the understanding of the segregation behavior at atomistic …


Achieving High Catalytic Activity And Redox Stability Of Doped Ceria Through A Novel Sol Gel Synthesis, Christopher Riley Nov 2018

Achieving High Catalytic Activity And Redox Stability Of Doped Ceria Through A Novel Sol Gel Synthesis, Christopher Riley

Shared Knowledge Conference

Ceria is widely studied in catalysis because of its high oxygen mobility and storage capacity. These properties are enhanced by the incorporation of dopant atoms into the ceria crystal structure. However, creating a homogenously doped structure requires a suitable synthesis technique. Otherwise, dopant atoms form an oxide phase on the ceria surface, which blocks highly active catalytic sites. Traditional production methods allow for cerium and dopant ions to segregate during synthesis. In this work, we demonstrate a novel sol gel synthesis method for producing homogeneously doped ceria. The method is easy and avoids the use of hazardous chemicals. Higher dopant …


Investigations On Hydrothermally Synthesized Co3o4/Mnxco3-Xo4 Core-Shell Nanoparticles, Ning Bian Aug 2018

Investigations On Hydrothermally Synthesized Co3o4/Mnxco3-Xo4 Core-Shell Nanoparticles, Ning Bian

MSU Graduate Theses

Two different morphologies (pseudo-spherical shaped or PS type and hexagonal nanoplate shaped or NP type) and two different concentrations (0.07 M and 0.1 M) of manganese incorporated Co3O4@MnxCo3-xO4 core-shell nanoparticles (CSNs) were investigated, respectively. The motivation of this work is to investigate the magnetic properties of, and specifically the exchange bias, between different shaped CSNs and between different Mn-doped CSNs. A two-step synthesis method was utilized to obtain the CSNs: a soft chemical approach was used to obtain Co3O4 nanoparticles and a hydrothermal nano-phase epitaxy was used to …


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik May 2018

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the …


Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow May 2018

Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow

Chemical Engineering Undergraduate Honors Theses

Iron-nickel bimetallic electrocatalysts have recently emerged as some of the best candidates for the oxygen evolution reaction (OER) in alkaline electrolyte. Understanding the effects of composition and morphology of iron-nickel nanoparticles is crucial for optimization and enhanced electrocatalyst performance. Both physical surface area and electrochemical surface area (ECSA) are functions of morphology. In this study, four different iron-nickel nanoparticle catalysts were synthesized. The catalysts were varied based on morphology (alloy versus core-shell) and composition (low, medium, and high stabilizer concentration). Brunauer-Emmett-Teller (BET) surface area analysis was conducted on three of the synthesized iron-nickel nanoparticles using a physisorption analyzer while electrochemical …