Open Access. Powered by Scholars. Published by Universities.®

Biology and Biomimetic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 259

Full-Text Articles in Biology and Biomimetic Materials

Clove Essential Oil And Nanoclays-Based Active Food Packaging, Kalpani Y. Perera, Shubham Sharma, Amit K. Jaiswal, Swarna Jaiswal Dec 2022

Clove Essential Oil And Nanoclays-Based Active Food Packaging, Kalpani Y. Perera, Shubham Sharma, Amit K. Jaiswal, Swarna Jaiswal

Articles

Active food packaging materials enhance the shelf-life of food products while reducing food waste. The current study aims to develop a biodegradable active food packaging material. The food packaging material was developed with the incorporation of clove essential oil, sodium alginate, gelatin, and nanoclay films were prepared. The influences of nanoclay and clove on the surface, optical, mechanical, chemical, barrier, and pH-indicating properties were studied. The lightness and yellowness increased by 1.06 folds and 3.34 folds when compared to clove (control), respectively. The UV barrier property 0.08±0.01nm in all films, while 8.37 folds reduction in transparency has been observed as …


Out Of The Wood: Sojurn Cyclery, Jay H. Kinsinger Dec 2022

Out Of The Wood: Sojurn Cyclery, Jay H. Kinsinger

Engineering and Computer Science Faculty Contributions to the Popular Press

No abstract provided.


Gopher Tortoise Seed Dispersal Monitoring, Bryan Torres Garcia Nov 2022

Gopher Tortoise Seed Dispersal Monitoring, Bryan Torres Garcia

2022 MME Undergraduate Research Symposium

Gopher tortoises are native to Florida and vital to the ecosystem due to the underground boroughs they build, which provide shelter to other animals, and for their key role in seed dispersion. In order to improve our understanding of the role of gopher tortoises on biodiversity, we aim to investigate the digestive track of gopher tortoises. Data on seed dispersion distance and gut retention time are critical to effective and efficient endangered plant species conservation efforts. In a multidisciplinary project between Department of Earth and Environment, College and Engineering, and the Miami Zoo, we are fabricating an ingestible device to …


Coupled Oscillators: Protein And Acoustics, Angelique N. Mcfarlane Aug 2022

Coupled Oscillators: Protein And Acoustics, Angelique N. Mcfarlane

Theses

This work encompassed three different vibrational energy transfer studies of coupled resonators (metal, topological, and microtubule comparison) inspired by the lattices of microtubules from regular and cancerous cells. COMSOL Multiphysics 5.4 was utilized to design the experiment. The simulation starts with an acoustic pressure study to examine the vibrational modes present in coupled cylinders, representing α-, β-tubulin heterodimers. The Metal Study consisted of 3 models (monomer, dimer, and trimer) to choose the correct height (40 mm) and mode (Mode 1) for study. The Topological Study was run to predict and understand how the lattice structure changes over a parametric sweep …


Continuous, Non-Destructive Detection Of Surface Bacterial Growth With Bioinspired Vascularized Polymers, Brandon Dixon Aug 2022

Continuous, Non-Destructive Detection Of Surface Bacterial Growth With Bioinspired Vascularized Polymers, Brandon Dixon

Electronic Theses and Dissertations

Reducing or eliminating bacteria on surfaces is vital for medical devices, drinking water quality, and industrial processes. Evaluating surface bacterial growth at buried interfaces can be problematic due to the time-consuming disassembly process required for obtaining standard surface samples. In this work, a continuous, non-destructive, and reusable method was developed to detect surface bacterial growth at buried interfaces. Inspired by vascular systems in nature that permit chemical communication between the surface and underlying tissues of an organism, bacterial-specific signals diffusing from cells on the surface were detected in channels filled with an inert carrier fluid embedded in a polymer matrix. …


Characterization Of Thermal Gelation Properties In Bioresorbable Thermally Activated Hydrogel Polymers For Hernia Surgery Applications, Alexander Mayfield Aug 2022

Characterization Of Thermal Gelation Properties In Bioresorbable Thermally Activated Hydrogel Polymers For Hernia Surgery Applications, Alexander Mayfield

All Theses

Hydrogel adhesives are a new class of materials with excellent biocompatibility, which makes them very attractive for biomaterial applications. It has been previously shown that Tetronic T1107, a four-arm poly (propylene oxide)-poly (ethylene oxide) (PPO-PEO) block copolymer, is useful as a chemical crosslinking thermo-responsive hydrogel for bioadhesive applications. The end groups of this polymer are modified with acrylate and N-hydroxysuccinimide (NHS) functional groups. The acrylate end group gives the polymer cohesive properties with long-range chemical crosslinking using dithiothreitol (DTT), while the NHS end group gives the polymer adhesive properties through bonding with amines found in organic tissue. It was found …


Development Of A Decellularized Hydrogel Composite And Its Application In A Novel Model Of Disc-Associated Low Back Pain In Female Sprague Dawley Rats, David Lillyman Jul 2022

Development Of A Decellularized Hydrogel Composite And Its Application In A Novel Model Of Disc-Associated Low Back Pain In Female Sprague Dawley Rats, David Lillyman

Biological Systems Engineering--Dissertations, Theses, and Student Research

Chronic low back pain is a global socioeconomic crisis compounded by an absence of reliable, curative treatments. The predominant pathology associated with chronic low back pain is degeneration of intervertebral discs in the lumbar spine. During degeneration, nerves can sprout into the intervertebral disc tissue and be chronically subjected to inflammatory and mechanical stimuli, resulting in pain. Pain arising from the intervertebral disc, or disc-associated pain, is a complex, multi-faceted disorder which necessitates valid animal models to screen therapeutics and study pathomechanisms of pain.

While many research teams have created animal models of disc degeneration, the translation of these platforms …


Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley May 2022

Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley

All Theses

Nature is frequently turned to for inspiration for the creation of new materials. Insect antennae are hollow, blood-filled fibers with complex shape, and are cantilevered at the head. The antenna is muscle-free, but the insect can controllably flex, twist, and maneuver it laterally. To explain this behavior, a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly) was performed. These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle fibers (Manduca sexta) or strain-adaptive fibers that stiffen when stretched (Vanessa cardui …


Life Cycle Analysis And Implications Of 3d Printed Bio-Based Homes, A Preliminary Study, Claire Liedtka May 2022

Life Cycle Analysis And Implications Of 3d Printed Bio-Based Homes, A Preliminary Study, Claire Liedtka

Honors College

The purpose of this study is to evaluate the life cycle, embodied energy, and sustainability potential for large scale additive manufacturing of 3D printed homes. Additive manufacturing is the process of selectively depositing materials using a 3D printing process, which optimizes material usage and reduces waste. I performed a preliminary Cradle to Cradle Life Cycle Analysis for constructing 3D printed homes using a bio-based material, poly-lactic acid (PLA) filled with wood flour. For purposes of this study, I consider the Life Cycle Analysis to be the environmental assessment of each stage of a product’s life cycle, from material sourcing, processing, …


Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh J. Byrne, Christine M. O’Connor, James Curtin, Furong Tian Apr 2022

Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh J. Byrne, Christine M. O’Connor, James Curtin, Furong Tian

Articles

Mycotoxins are secondary metabolic products of fungi. They are poisonous, carcinogenic, and mutagenic in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even death. Rapid, simple and low-cost methods of detection of mycotoxins are of immense importance and in great demand in the food and beverage industry, as well as in agriculture and environmental monitoring, and, for this purpose, lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety and environmental monitoring. The literature to date describing the development of ICSTs for the detection of different types of mycotoxins using …


The Tin Man Needs A Heart: A Proposed Framework For The Regulation Of Bioprinted Organs, Linda Foit Apr 2022

The Tin Man Needs A Heart: A Proposed Framework For The Regulation Of Bioprinted Organs, Linda Foit

Fordham Law Review

Each day, seventeen people die in the United States while waiting for an organ transplant. At least part of this need could be met by bioprinting, a technology that allows the on-demand production of custom-sized organs from a patient’s own cells. The field of bioprinting is progressing rapidly: the first bioprinted organs have already entered the clinic. Yet, developers of bioprinted organs face significant uncertainty as to how their potentially lifesaving products will be regulated—and by which government agency. Such regulatory uncertainty has the potential to decrease investment and stifle innovation in this promising technological field. This Note examines how …


Euplectella Aspergillum’S Natural Lattice Structure For Structural Design & Stability Landscape Of Thin Cylindrical Shells With Dimple Imperfections, Zoe Y. Sloane Mar 2022

Euplectella Aspergillum’S Natural Lattice Structure For Structural Design & Stability Landscape Of Thin Cylindrical Shells With Dimple Imperfections, Zoe Y. Sloane

Masters Theses

The first portion of this thesis assesses the structural application of a bracing design inspired by the deep-sea sponge, Euplectella Aspergillum. Many studies have investigated the natural strength found in the unique skeletal structure of this species. The braced design inspired by the sponge features square frames with two sets of cross-braces that are offset from the corners of each frame, creating a pattern of open and closed cells. This study reports the results of multiple Finite Element Analysis (FEA) computations that compare the described bracing pattern to a more common bracing design used in structural design. The designs …


Effects Of Bonding Pressure And Lamina Thickness On Mechanical Properties Of Clt Composed Of Southern Yellow Pine, Cody S. Bates Dec 2021

Effects Of Bonding Pressure And Lamina Thickness On Mechanical Properties Of Clt Composed Of Southern Yellow Pine, Cody S. Bates

Theses and Dissertations

This study produced cross-laminated timber panels at a range of four lamina thickness (5/8, 1, 1 1/8, and 1 1/4 inch) and three bonding pressures (50, 125, 200 psi), producing a total of 12 panels for mechanical testing. The goal of this study is to observe how the thickness and pressure trends affect the mechanical properties of CLT. Tests include flatwise bending, flatwise shear, internal-bond, and delamination. Results showed that bending MOE decreases as the panel thickness increases while bonding pressure had no significance. Bending MOR was less significant for the thickness and more significant for pressure compared to the …


Effect Of Mechanical Systems In Combating The Schistosomiasis Snails, Sherine Ahmed El Baradei Dec 2021

Effect Of Mechanical Systems In Combating The Schistosomiasis Snails, Sherine Ahmed El Baradei

Archived Theses and Dissertations

No abstract provided.


Structural Dynamics And Encapsulation Properties Of Polyelectrolyte Complex Micelles, Sachit Shah Dec 2021

Structural Dynamics And Encapsulation Properties Of Polyelectrolyte Complex Micelles, Sachit Shah

Electronic Theses and Dissertations, 2020-

Charged therapeutics such as nucleic acids and proteins can treat a vast range of human diseases that are traditionally undruggable. Their broadness in treating disease is due to their ability to influence cellular function. However, their high charge density and physiological barriers such as enzymatic degradation, hinder the deliverability of these molecules to the sites of disease. Polyelectrolyte complex (PEC) micelles are core-corona nanostructures that can encapsulate charged molecules and offer a platform for delivery. PECs form the core, when two oppositely charged polyelectrolytes are mixed in an aqueous solution, and the micelle corona is a neutral hydrophilic polymer that …


Using Peptide Design To Engineer Polyelectrolyte Complex Biomaterials, Sara Tabandeh Dec 2021

Using Peptide Design To Engineer Polyelectrolyte Complex Biomaterials, Sara Tabandeh

Electronic Theses and Dissertations, 2020-

The self-assembly of oppositely charged polymers provides a versatile platform to design materials for diverse applications in biology and medicine. Electrostatically-driven phase separation of oppositely charged polymers in aqueous solution gives rise to the formation of a polymer-rich phase called a polyelectrolyte complex (PEC). PECs can be in the form of liquid droplets (complex coacervates) or amorphous solid precipitates. Unlike synthetic polymers, peptides are good candidates for developing tailor-made formulations and structure-property relationships due to their biocompatibility, precise control over sequences, and ability to program hydrogen bonding interactions. However, little is known about the effect of combining additional molecular interactions …


Synergistic Anticancer Response Of Curcumin And Piperine Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against Glioblastoma Multiforme, Xinyi Zhao, Bilal Javad, Daxing Cui, James Curtin, Furong Tian Oct 2021

Synergistic Anticancer Response Of Curcumin And Piperine Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against Glioblastoma Multiforme, Xinyi Zhao, Bilal Javad, Daxing Cui, James Curtin, Furong Tian

Articles

Glioblastoma multiforme (GBM) is the most aggressive and commonly diag- 11 nosed brain cancer and presents a strong resistance to routine chemotherapeutic drugs. 12 The present study involves the synthesis of Lignin-g- p (NIPAM-co-DMAEMA) gold 13 nanogel, loaded with curcumin and piperine to treat GBM. The application has three 14 functions: (1) overcome the limitations of biodistribution, (2) enhance the toxicity of an- 15 ticancer drugs against GBM, (3) identify the uptake pathway. Atom transfer radical 16 polymerization was used to synthesize the Lignin-g-PNIPAM network, crosslinked with 17 the gold nanoparticles (GNPs) to self-assemble into nanogels. The size distribution and …


Improving Healthspan Through Patient-Derived Artificial Organs From Induced Pluripotent Stem Cells And Two-Photon Polymerization, Connor Espenshade Sep 2021

Improving Healthspan Through Patient-Derived Artificial Organs From Induced Pluripotent Stem Cells And Two-Photon Polymerization, Connor Espenshade

Protocols and Reports

Senescence, from the shortening of telomeres, accumulation of mutations, epigenetic hypomethylation, and other causes, begins an eventual cycle of decline in every patient. Stem cells disappear as a function of age, which in turn impairs cellular replication. Moreover, when fully differentiated cells are induced back into induced pluripotent stem cells (iPSCs), they not only revert to a state of pre-differentiation, but also to a younger cellular age. Their aging clocks turn back: their telomeres become longer and DNA methylation reverts back to an earlier age. It should therefore be possible to use iPSCs to replace the missing stem cells from …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles Sep 2021

Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles

Dissertations, Theses, and Capstone Projects

Hypersurface Photolithography (HP) is a printing method for fabricating structures and patterns composed of soft materials bound to solid surfaces and with ~1 micrometer resolution in the x, y, and z dimensions. This platform leverages benign, low intensity light to perform photochemical surface reactions with spatial and temporal control of irradiation, and, as a result, is particularly useful for patterning delicate organic and biological material. In particular, surface- initiated controlled radical polymerizations can be leveraged to create arbitrary polymer and block- copolymer brush patterns. Chapter 1 will review the advances in instrumentation architectures from our group that have made these …


Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen Jun 2021

Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen

Articles

Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO2 emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and induction heating, can heal cracks with melted binder and aged binder rejuvenation, and the synergistic effect of the two technologies shows significant advantages in healing efficiency over the single self-healing method. This study explores the fatigue life extension prospect of the combined healing system in porous asphalt. To this aim, porous asphalt (PA) test specimens with …


Effects Of Uv Exposure On The Thermo-Mechanical Properties Of Cactus Based Biopolymers, Madison Glozer, Megan Bolling, Addison Wolfson Jun 2021

Effects Of Uv Exposure On The Thermo-Mechanical Properties Of Cactus Based Biopolymers, Madison Glozer, Megan Bolling, Addison Wolfson

Materials Engineering

The viability of renewable biopolymers as sustainable alternatives to synthetic plastics is promising, however ultra-violet (UV) radiation can lead to premature degradation and reduction in the material’s performance. Biopolymers comprised of nopal cactus juice, animal protein, natural wax, and glycerin in differing percentages were studied to obtain thermo-mechanical data in relation to UV exposure. To quantify degradation, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, goniometry and gravimetric measurements were performed. Each formulation experienced mass loss as a result of UV exposure, which could be attributed to water evaporation. The thermogravimetric analysis indicated a reduction in the second …


Use Of Biomimicry Design Approach In Constructing Sustainable Resilient Structures (Case Study: Port Of Beirut), Farouk Bader, Marwan Halabi, Hiba Mohsen, Maged Youssef May 2021

Use Of Biomimicry Design Approach In Constructing Sustainable Resilient Structures (Case Study: Port Of Beirut), Farouk Bader, Marwan Halabi, Hiba Mohsen, Maged Youssef

BAU Journal - Creative Sustainable Development

Resiliency is not the same as sustainability, nor its substitute, but definitely the two concepts complement each other’s. Sustainability is the avoidance of depletion of natural resources to maintain ecological balance whereas resiliency is to recover, adapt and keep going in the face of setbacks. While designing with green approach is important but what will happen to leed points if the building becomes uninhabitable due to disasters, that’s where resiliency comes into play. The 2019 statistics showed that natural disasters accounted for 133 billion dollars losses and manmade ones accounted for other 7 billion in addition to 11,755 people worldwide …


Exploration Of The Sludge Biodiesel Pathway, Zachary Christman May 2021

Exploration Of The Sludge Biodiesel Pathway, Zachary Christman

Theses, Dissertations, and Student Research in Agronomy and Horticulture

Wastewater sludge is an overlooked source of fat, oil, and grease (FOG) that could be converted into biodiesel. The United States produces about 8 million tons of sludge per year. The disposal cost for this amount of sludge is about 2 billion dollars. The widespread availability and low cost of sludge compared to other biodiesel raw materials make it an economical choice for a renewable fuel. Using sludge as a raw material can produce 25 to 30 mg per gram of fatty acid methyl ester (FAME); the main component of biodiesel. Sludge biodiesel has the potential of transforming a portion …


Biofabricated Constructs Of Carbon-Based Nanoparticles With Mesenchymal Stem Cells For Orthopedic Repair, Steven D. Newby May 2021

Biofabricated Constructs Of Carbon-Based Nanoparticles With Mesenchymal Stem Cells For Orthopedic Repair, Steven D. Newby

Doctoral Dissertations

Breakthroughs in tissue engineering are moving at a rapid rate especially in the regenerative bone biofabrication. Technology growth in the field of additive manufacturing (AM) such 3D bioprinting which provides the ability to create biocompatible 3D construct on which a cell source could be seeded is an encouraging substitute to autologous grafts.

This present research aims to biofabricate a construct for bone tissue engineering using AM technology. The biocompatible material was chosen corresponding to bones extracellular matrix (ECM) composition, which demonstrates an inorganic and organic development phase: Poly (lactic-glycolic acid) was chosen as the polymeric matrix of the compound, due …


Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen May 2021

Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen

Chemical Engineering Undergraduate Honors Theses

Detection and identification of viral pathogens is essential in providing effective and rapid medical treatment. Well-established detection methods can be expensive, slow, and sometimes unable to provide the needed sensitivity and specificity. The Zika virus is one clinically relevant pathogen that cannot be easily identified due to cross-reactivity with other viruses from the same family. Electrochemical sensors enhanced with peptoid-functionalized gold nanoparticles (AuNPs) are an alternative to traditional techniques that offers rapid, accurate, label-free pathogen detection for point-of-care diagnostics. To this end, a peptoid capable of binding to the Zika virus envelope protein was developed and its binding affinity for …


Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins May 2021

Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins

Mechanical Engineering Undergraduate Honors Theses

According to the CDC, atrial fibrillation is responsible for more than 454,000 hospitalizations and approximately 158,000 deaths per year. A common treatment for atrial fibrillation is catheter ablation, a process in which a long flexible tube is guided through the femoral artery and to the source of arrhythmia in the heart, where it measures the electrical potential at various locations and converts problematic heart tissue to scar tissue via ablation. This paper details the design and control of a low-cost ($400) peristaltic pump system using repetitive control to replicate blood pressure in the left atrium in a conductive silicone model …


Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor May 2021

Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor

Doctoral Dissertations

Hydropower accounts for nearly 40% of renewable electricity generation in the US; however, dams significantly impact the surrounding aquatic ecosystems. One of the most visible impacts of hydropower―beyond the dam itself―is the direct negative impacts (injury or death) to fish populations that must pass through hydropower turbines to access desired downstream habitat. During passage, fishes face many potential stressors that can cause severe injuries and often leads to high rates of mortality. In this dissertation, I have focused on quantifying how fishes respond to impacts from turbine blades that may occur during turbine passage. Laboratory research into blade strike impact …


Surface Engineering Of Cerium Oxide Nanocyrstal Dispersions: Colloidal Properties, Ageing Effects, & Electroanalysis, Craig Neal May 2021

Surface Engineering Of Cerium Oxide Nanocyrstal Dispersions: Colloidal Properties, Ageing Effects, & Electroanalysis, Craig Neal

Electronic Theses and Dissertations, 2020-

Colloidal materials are highly diverse and present complex physicochemical properties which define their utilities in applications spanning diverse industries. In particular, nano-scale colloids have received tremendous attention due to their unique, specific activities as compared to larger-sized preparations. Within the biomedical sciences, nano-colloids are routinely used as inert carriers of therapeutics and/or diagnostic agents. Beyond this, researchers have developed functional colloids which demonstrate bio-active or diagnostic properties themselves: often related to an optimized, or tuned, surface character. Among these, nanoscale cerium oxide (nanoceria) has shown great promise as a bi-functional, therapeutic material: producing pro- or anti- oxidative chemical response in …


Characterization Of Protein Aggregation Using A Solid-State Nanopore Device, Mitu Chandra Acharjee May 2021

Characterization Of Protein Aggregation Using A Solid-State Nanopore Device, Mitu Chandra Acharjee

Graduate Theses and Dissertations

Protein aggregation has been linked to many chronic and devastating neurodegenerative human diseases and is also strongly associated with aging. In the case of neurodegenerative diseases, α, β tubulins and tau proteins dissociate in a neuron cell and aggregate both intra and extra-cellularly. Tau and tubulin aggregations were found as one of the major causes of many neurodegenerative diseases, such as Parkinson’s, Picks, Alzheimer’s, Huntington, and Prion. Finding the state and mechanism of protein aggregation is significant. In this work, tau and tubulin aggregations were detected in ionic solutions using the solid-state nanopore technique. Besides tau and tubulin, aggregations of …