Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Thin films

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 92

Full-Text Articles in Materials Science and Engineering

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler Mar 2024

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler

Faculty Publications

Ferroelectricity in hafnium zirconium oxide (Hf1−xZrxO2) and the factors that impact it have been a popular research topic since its discovery in 2011. Although the general trends are known, the interactions between fabrication parameters and their effect on the ferroelectricity of Hf1−xZrxO2 require further investigation. In this paper, we present a statistical study and a model that relates Zr concentration (x), film thickness (tf), and annealing temperature (Ta) with the remanent polarization (Pr) in tungsten (W)-capped Hf1−xZrxO2. …


Fabrication Of Smooth Sac305 Thin Films Via Magnetron Sputtering And Evaluations Of Microstructure, Creep, And Electrical Resistivity, Manish Ojha Oct 2023

Fabrication Of Smooth Sac305 Thin Films Via Magnetron Sputtering And Evaluations Of Microstructure, Creep, And Electrical Resistivity, Manish Ojha

Mechanical & Aerospace Engineering Theses & Dissertations

SAC305 (96.5%Sn-3%Ag-0.5%Cu) is the leading alternative to the traditional Sn-Pb solder eutectic alloy owing to its low melting temperature, better compatibility with other components, and excellent mechanical/structural properties. In the realm of modern electronics, where devices are increasingly miniaturized, the design and characterization of thin solder joints become paramount. The orientation and size of the grains within the solder can influence its ability to withstand mechanical stresses. However, research on SAC thin films remains sparse, and these films present unique challenges and characteristics compared to their bulk counterparts, influenced by factors like interfaces, stresses, thickness, microstructure, and the nature of …


Intrinsic And Atomic Layer Etching Enhanced Area-Selective Atomic Layer Deposition Of Molybdenum Disulfide Thin Films, Jake Soares, Wesley Jen, John D. Hues, Drew Lysne, Jesse Wensel, Steven M. Hues, Elton Graugnard Sep 2023

Intrinsic And Atomic Layer Etching Enhanced Area-Selective Atomic Layer Deposition Of Molybdenum Disulfide Thin Films, Jake Soares, Wesley Jen, John D. Hues, Drew Lysne, Jesse Wensel, Steven M. Hues, Elton Graugnard

Materials Science and Engineering Faculty Publications and Presentations

For continual scaling in microelectronics, new processes for precise high volume fabrication are required. Area-selective atomic layer deposition (ASALD) can provide an avenue for self-aligned material patterning and offers an approach to correct edge placement errors commonly found in top-down patterning processes. Two-dimensional transition metal dichalcogenides also offer great potential in scaled microelectronic devices due to their high mobilities and few-atom thickness. In this work, we report ASALD of MoS2 thin films by deposition with MoF6 and H2S precursor reactants. The inherent selectivity of the MoS2 atomic layer deposition (ALD) process is demonstrated by growth …


Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne May 2023

Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne

Physics Theses & Dissertations

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently high purity niobium is the material of choice for SRF cavities which have been optimized to operate near their theoretical field limits. This brings about the need for significant R&D efforts to develop next generation superconducting materials which could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under high RF magnetic field without penetration of quantized …


Understanding The Role Thin Film Interfaces Play In Solar Cell Performance And Stability, Mirra M. Rasmussen, Laura S. Bruckman, Ina T. Martin Apr 2023

Understanding The Role Thin Film Interfaces Play In Solar Cell Performance And Stability, Mirra M. Rasmussen, Laura S. Bruckman, Ina T. Martin

Student Scholarship

As more efficient and cost-effective photovoltaic (PV) architectures are developed, solar becomes an ever more competitive and viable replacement for fossil fuels. Full grid electrification necessitates the development of efficient, reliable, cost-effective technologies - and there is room for many different kinds of PV in this expanding market. The practical challenges and constraints of terawatt PV production have brought scalability and durability into sharp scientific focus. From a materials perspective, there are commonalities in the materials questions and challenges across different PV technologies. Whereas most PV technology is referred to by the absorber layer - e.g. silicon, or perovskite solar …


Characterization Of An Amine-Thiol Cosolvent System : Ethylenediamine And Mercaptoethanol, Fernanda Giongo Fernandes Dec 2022

Characterization Of An Amine-Thiol Cosolvent System : Ethylenediamine And Mercaptoethanol, Fernanda Giongo Fernandes

Legacy Theses & Dissertations (2009 - 2024)

Since its introduction, the amine-thiol cosolvent system has been successfully utilized for the deposition of various thin-film devices, but its mechanism of action is still uncertain. Herein, we have attempted to dissect some of the chemical characteristics of amine-thiol cosolvents, with a special interest taken towards a mixture of ethylenediamine (en) and mercaptoethanol (ME). Conductivity was measured for multiple amine-thiol combinations at different ratios to determine extent of ionization in solution, with en-ME having one of the highest solution conductivities. Exposing the solution to air for several days was found to decrease the conductivity of en-ME, indicating the formation of …


Simulation And Fabrication Of All Oxide-Based Ito/Tio2/Cuo/Au Heterostructure For Solar Cell Applications, Sajal Islam Dec 2021

Simulation And Fabrication Of All Oxide-Based Ito/Tio2/Cuo/Au Heterostructure For Solar Cell Applications, Sajal Islam

MSU Graduate Theses

Oxide heterostructures have drawn great attention lately, due to their environment-friendly properties and potential applications in optoelectronic devices. In this work, a simulation study of a heterojunction solar cell was performed with SCAPS (a solar cell simulator) using TiO2 as an n-type and CuO as a p-type layer. The thickness and the dopant-dependent simulations have shown that the solar cell operates at a maximum efficiency of 19.2% when the thickness of the TiO2/CuO layers is chosen 1.4µm/1.2µm compared to the 11.5% efficiency when FTO is replaced with ITO. An indium-doped tin oxide (ITO) vs fluorine-doped tin oxide (FTO) comparison study …


Pulsed Laser Annealing On The Optoelectronic Properties Of Zno Thin Films, Md Abu Zobair Dec 2021

Pulsed Laser Annealing On The Optoelectronic Properties Of Zno Thin Films, Md Abu Zobair

MSU Graduate Theses

ZnO thin films have attracted great attention recently due to their unique electronic and optical properties. However, for proper implementation of ZnO in electronic devices it is necessary to understand the role of native point defects present inside the material as these wide bandgap semiconductors are inherently n-type due to oxygen vacancies. The objective is to control the electronic and optical properties of ZnO thin films through pulsed laser annealing (PLA). Thin films of ZnO have been grown on different substrates using pulsed laser deposition. Then PLA of the films are done by changing laser parameters (energy, frequency, pulse width, …


Perovskite Film Formation For Solar Cell Absorbers: Effects Of Substrate Modification, Mirra M. Rasmussen, Kyle M. Crowley, Ina T. Martin Oct 2021

Perovskite Film Formation For Solar Cell Absorbers: Effects Of Substrate Modification, Mirra M. Rasmussen, Kyle M. Crowley, Ina T. Martin

Student Scholarship

As perovskite solar cell efficiencies have risen rapidly, practical constraints have made durability a critical concern. Whereas much attention has been paid to the development of the perovskite absorber layer, the charge transport layers can also be engineered to better the performance and stability of the device. This work uses the molecular modifier bromopropyltrimethoxysilane (BPTMS) to alter the interface between indium tin oxide (ITO, a common thin film solar cell transparent electrode) and methylammonium lead iodide (MAPbI3, a common perovskite absorber) to improve the morphology and stability of the perovskite absorber film. The substrate, molecular modifier, and perovskite film were …


Application Of In Situ And Ex Situ Characterization Of Atomic Layer Deposition Processes For Gallium Phosphide And Sodium Fluoride, Sara Rose Kuraitis Aug 2021

Application Of In Situ And Ex Situ Characterization Of Atomic Layer Deposition Processes For Gallium Phosphide And Sodium Fluoride, Sara Rose Kuraitis

Boise State University Theses and Dissertations

Atomic layer deposition (ALD) is a vapor deposition technique for synthesizing thin films with nanometer thickness control. ALD films are deposited on a substrate surface in a cyclic layer-by-layer fashion utilizing alternating doses of highly reactive chemical precursors. Precursors are selected to undergo self-limiting chemical reactions with the surface, and desired film thickness is achieved by varying the number of ALD cycles accordingly. Optimization of ALD process parameters and precursor chemistry enables conformal coating of arbitrary substrate geometries, including high aspect ratio features such as trenches. In the decades since its introduction, ALD has been used for applications across many …


Decoupling The Effects Of Interfacial Chemistry And Grain Size In Perovskite Stability, Mirra M. Rasmussen, Kyle M. Crowley, Miranda S. Gottlieb, Geneviève Sauvé, Ina T. Martin Jul 2021

Decoupling The Effects Of Interfacial Chemistry And Grain Size In Perovskite Stability, Mirra M. Rasmussen, Kyle M. Crowley, Miranda S. Gottlieb, Geneviève Sauvé, Ina T. Martin

Student Scholarship

No abstract provided.


Atomic Layer Deposition Of Sodium Fluoride Thin Films, Sara Kuraitis, Donghyeon Kang, Anil U. Mane, Hua Zhou, Jake Soares, Jeffrey W. Elam, Elton Graugnard May 2021

Atomic Layer Deposition Of Sodium Fluoride Thin Films, Sara Kuraitis, Donghyeon Kang, Anil U. Mane, Hua Zhou, Jake Soares, Jeffrey W. Elam, Elton Graugnard

Materials Science and Engineering Faculty Publications and Presentations

The need for advanced energy conversion and storage devices remains a critical challenge amid the growing worldwide demand for renewable energy. Metal fluoride thin films are of great interest for applications in lithium-ion and emerging rechargeable battery technologies, particularly for enhancing the stability of the electrode-electrolyte interface and thereby extending battery cyclability and lifetime. Reported within, sodium fluoride (NaF) thin films were synthesized via atomic layer deposition (ALD). NaF growth experiments were carried out at reactor temperatures between 175 and 250 °C using sodium tert-butoxide and HF-pyridine solution. The optimal deposition temperature range was 175–200 °C, and the resulting …


Load-Bearing Entanglements In Polymer Glasses, Cynthia Bukowski, Tianren Zhang, Robert A. Riggleman, Alfred J. Crosby Jan 2021

Load-Bearing Entanglements In Polymer Glasses, Cynthia Bukowski, Tianren Zhang, Robert A. Riggleman, Alfred J. Crosby

Data and Datasets

Data for "Load-bearing entanglements in polymer glasses" Cynthia Bukowski, Tianren Zhang, Robert A. Riggleman, Alfred J. Crosby. 2021.

Experimental and simulation data describing the mechanical response of glassy polymer blends in a thin film state. Blends are made of long and short chain polymers. The load-bearing entanglement network is quantified.


Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene Jan 2021

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene

Theses and Dissertations

In the field of photovoltaics, scientists and researchers are working fervently to produce a combination of efficient, stable, low cost and scalable devices. Methylammonium lead trihalide perovskite has attracted intense interest due to its high photovoltaic performance, low cost, and ease of manufacture. Their high absorption coefficient, tunable bandgap, low-temperature processing, and abundant elemental constituent provide innumerable advantages over other thin film absorber materials. Since the perovskite film is the most important in the device, morphology, crystallization, compositional and interface engineering have been explored to boost its performance and stability. High temperatures necessary for crystallization of organic-inorganic hybrid perovskite films …


Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart Jan 2021

Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

This investigation on Metal-Organic Framework (MOF) HUKUST-1 films focuses on comparing the undoped pristine state and with the case of doping by TCNQ infiltration of the MOF pore structure. We have determined the temperature dependent charge transport and p-type conductivity for HKUST-1 films. Furthermore, the electrical conductivity and the current-voltage characteristics have been characterized in detail. Because the most common forms of MOFs, bulk MOF powders, do not lend themselves easily to electrical characterization investigations, here in this study the electrical measurements were performed on dense, compact surface-anchored metal-organic framework (SURMOF) films. These monolithic, well-defined, and (001) preferentially oriented MOF …


Theoretical Analysis Of Experimental Data Of Sodium Diffusion In Oxidized Molybdenum Thin Films, Orlando Ayala, Benjamin Belfore, Tasnuva Ashrafee, John Akwari, Grace Rajan, Shankar Karki, Deewakar Poudel, Sylvain Marsillac Jan 2021

Theoretical Analysis Of Experimental Data Of Sodium Diffusion In Oxidized Molybdenum Thin Films, Orlando Ayala, Benjamin Belfore, Tasnuva Ashrafee, John Akwari, Grace Rajan, Shankar Karki, Deewakar Poudel, Sylvain Marsillac

Engineering Technology Faculty Publications

In this work, the diffusion process of sodium (Na) in molybdenum (Mo) thin films while it was deposited on soda lime glass (SLG) was studied. A small amount of oxygen was present in the chamber while the direct-current (DC) magnetron sputtering was used for the deposition. The substrate temperatures were varied to observe its effect. Such molybdenum films, with or without oxidations, are often used in thin film solar cells, either as back contact or as hole transport layers. Secondary ion mass spectrometry (SIMS) was used to quantify the concentration of the species. A grain diffusion mechanistic model incorporating the …


Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey Jun 2020

Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey

Publications and Research

La(Fe,Si)13–based compounds are considered to be very promising magnetocaloric materials for magnetic refrigeration applications. Many studies have focused on this material family but only in bulk form. In this paper we report on the fabrication of thick films of La(Fe,Si)13, both with and without post-hydriding. These films exhibit magnetic and structural properties comparable to bulk materials. We also observe that the ferromagnetic phase transition has a negative thermal hysteresis, a phenomenon not previously found in this material but which may have its origins in the availability of a strain energy reservoir, as in the cases of …


Fabrication Of Nanoscale Columnar Diodes By Glancing Angle Deposition, Jacob D. Weightman May 2020

Fabrication Of Nanoscale Columnar Diodes By Glancing Angle Deposition, Jacob D. Weightman

Macalester Journal of Physics and Astronomy

Glancing angle deposition (GLAD) is a process in which thin films are deposited onto a substrate with obliquely incident vapor together with precisely controlled azimuthal substrate rotation. Ballistic shadowing effects due to the oblique incidence produce nanoscale structures, and a variety of feature shapes, including tilted columns, helices, and vertical columns can be achieved by varying the azimuthal rotation during the deposition process. Due to this control of morphology and the compatibility of the process with a wide variety of materials, GLAD films have found applications in a variety of fields including sensing, photonics, photovoltaics, and catalysis, where they are …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey Oct 2019

Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey

Faculty Publications

Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated …


Application-Specific Oxide-Based And Metal-Dielectric Thin Film Materials Prepared By Rf Magnetron Sputtering Preprints201908.0184.V1.Pdf, Mohammad Nur-E-Alam, Wade Lonsdale, Mikhail Vasiliev, Kamal Alameh Aug 2019

Application-Specific Oxide-Based And Metal-Dielectric Thin Film Materials Prepared By Rf Magnetron Sputtering Preprints201908.0184.V1.Pdf, Mohammad Nur-E-Alam, Wade Lonsdale, Mikhail Vasiliev, Kamal Alameh

Mikhail Vasiliev

We report on the development of several different thin-film functional material systems prepared by RF magnetron sputtering at Edith Cowan University nanofabrication labs. We conduct research on the design, prototyping, and practical fabrication of high-performance magneto-optic (MO) materials, oxide based sensor components, and heat regulation coatings for advanced construction and solar windows.


Deformation Correlations And Machine Learning: Microstructural Inference And Crystal Plasticity Predictions, Michail Tzimas Jan 2019

Deformation Correlations And Machine Learning: Microstructural Inference And Crystal Plasticity Predictions, Michail Tzimas

Graduate Theses, Dissertations, and Problem Reports

The present thesis makes a connection between spatially resolved strain correlations and material processing history. Such correlations can be used to infer and classify prior deformation history of a sample at various strain levels with the use of Machine Learning approaches. A simple and concrete example of uniaxially compressed crystalline thin films of various sizes, generated by two-dimensional discrete dislocation plasticity simulations is examined. At the nanoscale, thin films exhibit yield-strength size effects with noisy mechanical responses which create an interesting challenge for the application of Machine Learning techniques. Moreover, this thesis demonstrates the prediction of the average mechanical responses …


Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel Jan 2019

Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel

Legacy Theses & Dissertations (2009 - 2024)

Nanomaterials have chemical, electronic, optical, and other properties distinct from their bulk counterparts. However, the atom-precise synthesis of these materials remains a challenge, leaving open many scientific questions regarding the size regime between nanoparticulate (quantum confined) and bulk character. In this work, efforts toward the synthesis of nanoparticulate and atom-precise metal and semimetal materials are described. The synthesis of II-V semiconductor Cd3As2 having a near-zero bandgap is discussed. Analysis by UV-Vis absorption spectroscopy and powder X-ray diffraction indicate the formation of material with unexpected crystallinity and absorption properties The interaction between the molecular source of As and the solvent was …


Epitaxial Growth Of Semiconductors And Chiral Metal Surfaces Using Spin Coating And Electrodeposition, Meagan V. Kelso Jan 2019

Epitaxial Growth Of Semiconductors And Chiral Metal Surfaces Using Spin Coating And Electrodeposition, Meagan V. Kelso

Doctoral Dissertations

"The current primary methods for epitaxial growth are energy intensive, requiring high temperature or high vacuum to obtain quality thin films. This dissertation explores the solution process methods of electrodeposition and spin coating for growth of epitaxial thin films. First, a method is developed to directly electrodeposit epitaxial CH3NH3PbI3 perovskite for solar cells on single crystal Au by electrochemically reducing I2 in organic solution. Perovskite is a newly explored material for solar cells, and its efficiency may be further improved by increasing the crystalline order. Second, a study on epitaxially electrodeposited chiral metal surfaces …


Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Jun 2018

Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Fluorescence photons emitted by single molecules contain rich information regarding their rotational motions, but adapting single-molecule localization microscopy (SMLM) to measure their orientations and rotational mobilities with high precision remains a challenge. Inspired by dipole radiation patterns, we design and implement a Tri-spot point spread function (PSF) that simultaneously measures the three-dimensional orientation and the rotational mobility of dipole-like emitters across a large field of view. We show that the orientation measurements done using the Tri-spot PSF are sufficiently accurate to correct the anisotropy-based localization bias, from 30 nm to 7 nm, in SMLM. We further characterize the emission anisotropy …


Perovskite Solar Cells Fabricated Via Scalable Dip Coating Methods, Joseph F. Iannello May 2018

Perovskite Solar Cells Fabricated Via Scalable Dip Coating Methods, Joseph F. Iannello

Theses and Dissertations

Perovskite solar cells present the possibility for less expensive electricity generation, through the use of low cost materials and fabrication methods relative to current silicon-based technology. Many current methods of fabricating thin film perovskite solar cells focus on spin-coating, which inherently lacks scalability due to particle conglomeration, poor uniformity over a larger area, and safety concerns. Dip-coating, an alternative to spin-coating, which is explored here addresses these issues which limit scalability. Each individual layer can be separately synthesized, deposited, and characterized, which leads towards scalability. Choosing only the best results from each independent layer allowed progress to the creation of …


Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac May 2018

Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

In view of the large-scale utilization of Cu(In,Ga)Se2 (CIGS) solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE) has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which …


Synthesis, Processing, And Fundamental Phase Formation Study Of Czts Films For Solar Cell Applications, Osama Awadallah Apr 2018

Synthesis, Processing, And Fundamental Phase Formation Study Of Czts Films For Solar Cell Applications, Osama Awadallah

FIU Electronic Theses and Dissertations

Copper zinc tin sulfide (Cu2ZnSnS4 or CZTS) kesterite compound has attracted much attention in the last years as a new abundant, low cost, and environmentally benign material with desirable optoelectronic properties for Photovoltaic (PV) thin film solar cell applications. Among various synthesis routes for CZTS thin films, sol-gel processing is one of the most attractive routes to obtain CZTS films with superior quality and low cost.

In this study, sol-gel sulfurization process parameters for CZTS thin films were systematically investigated to identify the proper process window. In addition, temperature dependent Raman spectroscopy was employed to monitor the …


Structural And Photoluminescence Properties Of Zno Thin Films Deposited By Ultrasonic Spray Pyrolysis, Iwan Sugihartono, Erfan Handoko, Vivi Fauzia, Artoto Arkundato, Lara Permata Sari Apr 2018

Structural And Photoluminescence Properties Of Zno Thin Films Deposited By Ultrasonic Spray Pyrolysis, Iwan Sugihartono, Erfan Handoko, Vivi Fauzia, Artoto Arkundato, Lara Permata Sari

Makara Journal of Technology

Zinc oxide (ZnO) thin films on a silicon (Si) (111) substrate were grown herein using ultrasonic spray pyrolysis at 450 °C with different Zn concentrations. The ZnO thin films had X-ray diffraction patterns of a polycrystalline hexagonal wurtzite structure. The (002) and (101) peak intensities changed under different Zn concentrations. Furthermore, according to Scherer's and Stokes–Wilson equations, the crystallite size and the internal strain of the ZnO thin films in the (002) and (101) peaks changed with the Zn concentration. Optically, the photoluminescence spectra indicated that the ratio of the UV/GB emission of the ZnO thin films was the highest …


Surface And Interface Characterization Of Solution-Processed Metal Oxides And Pedot:Pss Using Photoelectron Spectroscopy, Lynette M. Kogler Dec 2017

Surface And Interface Characterization Of Solution-Processed Metal Oxides And Pedot:Pss Using Photoelectron Spectroscopy, Lynette M. Kogler

UNLV Theses, Dissertations, Professional Papers, and Capstones

Solution-processed materials are appealing for use in printable electronics as a means to lower production costs, but precise control of the process is crucial for achieving the desired properties in the final materials and their interfaces. Electronic interface properties depend on both the involved materials and their fabrication processes, impacting the development and commercialization of these materials. Analyzing the chemical and electronic structure of these materials, particularly at the surfaces and interfaces, is important not only for insuring that the materials have the desired properties, but also for understanding the effects of the fabrication process and how to modify properties …