Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Ceramics

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 43

Full-Text Articles in Materials Science and Engineering

Xps Study Of Calcium Lanthanum Sulfide Ceramics, Brian E. Butkus Jan 2023

Xps Study Of Calcium Lanthanum Sulfide Ceramics, Brian E. Butkus

Graduate Thesis and Dissertation 2023-2024

Long wave infrared (LWIR) optics that transmit in the 8 to 14 m wavelength range and, additionally, can withstand severe physical and thermal stresses are needed for advanced remote sensing, guidance and communication-based applications. However, most non-oxide transparent LWIR optics do not have the wider transmission range, nor the hardness and resistance to thermal shock needed for extreme environments. Because of these limitations, research is circling back to a promising material, calcium lanthanum sulfide (CLS), that could meet LWIR needs for extreme environments.

In this thesis, we will demonstrate the abilities of x-ray photoelectron spectroscopy (XPS) as a technique for …


Irradiation-Induced Amorphous-To-Crystalline Phase Transformations In Ceramic Materials, Cyrus Koroni, Tristan Olsen, Janelle P. Wharry, Hui Xiong Sep 2022

Irradiation-Induced Amorphous-To-Crystalline Phase Transformations In Ceramic Materials, Cyrus Koroni, Tristan Olsen, Janelle P. Wharry, Hui Xiong

Materials Science and Engineering Faculty Publications and Presentations

Amorphous ceramics are a unique class of materials with unusual properties and functionalities. While these materials are known to crystallize when subjected to thermal annealing, they have sometimes been observed to crystallize athermally when exposed to extreme irradiation environments. Because irradiation is almost universally understood to introduce disorder into materials, these observations of irradiation-induced ordering or crystallization are unusual and may partially explain the limited research into this phenomenon. However, the archival literature presents a growing body of evidence of these irradiation-induced amorphous-to-crystalline (a-to-c) phase transformations in ceramics. In this perspective, the summary and review of examples from the literature …


Special Topic On Materials And Devices For 5g Electronics, Nathan D. Orloff, Rick Ubic, Michael Lanagan Feb 2022

Special Topic On Materials And Devices For 5g Electronics, Nathan D. Orloff, Rick Ubic, Michael Lanagan

Materials Science and Engineering Faculty Publications and Presentations

Next generation communications are inspiring entirely new applications in education, healthcare, and transportation. These applications are only possible because of improvements in latency, data rates, and connectivity in the latest generation. Behind these improvements are new materials and devices that operate at much higher frequencies than ever before, a trend that is likely to continue.


Creep Behavior And Deformation Mechanisms Of Spark Plasma Sintered Oxide Ceramics For Aerospace Systems At 1300˚C - 1400˚C, David D. Swanson Dec 2021

Creep Behavior And Deformation Mechanisms Of Spark Plasma Sintered Oxide Ceramics For Aerospace Systems At 1300˚C - 1400˚C, David D. Swanson

Theses and Dissertations

The mechanical behavior of YAG and LuAG was investigated at elevated temperatures. The specific materials investigated in this work include high-purity, polycrystalline YAG, high-purity, polycrystalline LuAG, and two doped variants of YAG: 2at% Yb-doped, polycrystalline YAG and 2at% Er-doped, polycrystalline YAG. Several billets of each material were prepared and processed by means of spark plasma sintering (SPS). Many different sintering parameters were utilized in order to obtain materials with various physical properties and to identify the effects of sintering parameters on the average grain size of the resulting materials. The compressive creep behavior of these materials was investigated at 1300°C …


Thermophysical Properties Of Nominally Phase Pure Boride Ceramics, Austin D. Stanfield Jan 2021

Thermophysical Properties Of Nominally Phase Pure Boride Ceramics, Austin D. Stanfield

Doctoral Dissertations

"This research focusses on the thermophysical properties of nominally phase pure boride ceramics. As interest in ultra high temperature ceramics increases due to a renewed interest in hypersonic flight vehicles and with the expanding materials design space accompanying interest in high entropy materials, it is imperative to understand the intrinsic properties of boride ceramics. By reducing Hf content in ZrB2 from the natural abundance, ~1.75 at% in this case, to ~100 ppm, thermal conductivity increased from 88 W/m·K to 141 W/m·K. Removal of Hf allowed the thermal conductivity of ZrB2 with small transition metal solute additions to be …


First-Principles Studies Of Anion Engineering In Functional Ceramics, Steven Timothy Hartman May 2020

First-Principles Studies Of Anion Engineering In Functional Ceramics, Steven Timothy Hartman

McKelvey School of Engineering Theses & Dissertations

Ceramic materials display a wide variety of valuable properties, such as ferroelectricity, superconductivity, and magnetic ordering, due to the partially covalent bonds which connect the cations and anions. While many breakthroughs have been made by mixing multiple cations on a sublattice, the equivalent mixed-anion ceramics have not received nearly as much attention, despite the key role the anion plays in the materials’ properties. There is great potential for functional ceramics design using anion engineering, which aims to tune the materials properties by adding and removing different types of anions in existing classes of ceramic materials. In this dissertation, I present …


Off Axis Compressive Response Of Ice-Templated Ceramics, Rahul Kumar Jujjavarapu Apr 2019

Off Axis Compressive Response Of Ice-Templated Ceramics, Rahul Kumar Jujjavarapu

Mechanical & Aerospace Engineering Theses & Dissertations

The off-axis compressive behavior of ice-templated ceramic was analyzed using experimental results and micro-mechanical model simulation. Ice-templated ceramics is a versatile processing technique used to manufacture anisotropic ceramic foam by exploiting the anisotropic growth characteristics and lamellar morphology. The ice-templating process results in processing-structure-property relationships determined by the microstructure. The processed alumina samples which were later manufactured by water jet machine from the freeze casting were tested under quasi-static off-axis loading conditions and were used to determine the mechanical properties of the material. Digital image correlation (DIC) was used to measure the strain response of ice-templated ceramic under off-axis loading. …


Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li Jan 2019

Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li

Doctoral Dissertations

"Ceramic On-Demand Extrusion (CODE) is a recently developed freeform extrusion fabrication process for producing dense ceramic components from single and multiple constituents. In this process, aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle to print each layer sequentially. Once one layer is printed, it is surrounded by oil to prevent undesirable water evaporation from the perimeters of the part. The oil level is regulated just below the topmost layer of the part being fabricated. Infrared radiation is then applied to uniformly and partially dry the top layer so that the yield stress of the paste increases to avoid part deformation. By repeating the above steps, the part is printed in a layer-wise fashion, followed by post-processing. Paste extrusion precision of different extrusion mechanisms was compared and analyzed, with an auger extruder determined to be the most suitable paste extruder for the CODE system. A novel fabrication system was developed based on a motion gantry, auger extruders, and peripheral devices. Sample specimens were then produced from 3 mol% yttria stabilized zirconia using this fabrication system, and their properties, including density, flexural strength, Young's modulus, Weibull modulus, fracture toughness, and hardness were measured. The results indicated that superior mechanical properties were achieved by the CODE process among all the additive manufacturing processes. Further development was made on the CODE process to fabricate ceramic components that have external/internal features such as overhangs by using fugitive support material. Finally, ceramic composites with functionally graded materials (FGMs) were fabricated by the CODE process using a dynamic mixing device"--Abstract, page iv.


A Preliminary Study Of Smithport Plain Bottle Morphology In The Southern Caddo Area, Robert Z. Selden Jr. Jan 2018

A Preliminary Study Of Smithport Plain Bottle Morphology In The Southern Caddo Area, Robert Z. Selden Jr.

CRHR: Archaeology

This study expands upon a previous analysis of the Clarence H. Webb collection, which resulted in the identification of two discrete shapes used in the manufacture of the base and body of Smithport Plain bottles. The sample includes the Smithport Plain bottles from the Webb collection, and four new bottles: two previously repatriated specimens in the Pohler Collection, and two from the Mitchell site (41BW4) to test whether those specimens align morphologically with the Belcher Mound or Smithport Landing specimens. Results indicate significant allometry and a significant difference in Smithport Plain body and base shapes for bottles produced at the …


Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen Jan 2018

Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen

Masters Theses

"The objective of this thesis work was to design ceramic paste systems that assist in achieving a high theoretical density ( > 95%) after deposition by a novel additive manufacturing process, i.e. Ceramic On-Demand Extrusion (CODE). The work is encompassed in five main sections: Sections 1 and 2 provide an introduction and literature review of relevant topics for the following sections of experimentation. Section 3 provides an analysis of a reaction chemistry to identify three discrete materials that could be combined via CODE and result in zirconium diboride (ZrB2) post-sintering. Section 4 describes the development of a high solids …


Investigation Of Electric Field–Induced Structural Changes At Fe-Doped Srtio3 Anode Interfaces By Second Harmonic Generation, David Ascienzo, Haochen Yuan, Steven Greenbaum, Thorsten J. Bayer, Russell A. Maier, Jian-Jun Wang, Clive A. Randall, Elizabeth C. Dickey, Haibin Zhao, Yuhang Ren Oct 2016

Investigation Of Electric Field–Induced Structural Changes At Fe-Doped Srtio3 Anode Interfaces By Second Harmonic Generation, David Ascienzo, Haochen Yuan, Steven Greenbaum, Thorsten J. Bayer, Russell A. Maier, Jian-Jun Wang, Clive A. Randall, Elizabeth C. Dickey, Haibin Zhao, Yuhang Ren

Publications and Research

We report on the detection of electric field–induced second harmonic generation (EFISHG) from the anode interfaces of reduced and oxidized Fe-doped SrTiO3 (Fe:STO) single crystals. For the reduced crystal, we observe steady enhancements of the susceptibility components as the imposed dc-voltage increases. The enhancements are attributed to a field-stabilized electrostriction, leading to Fe:Ti-O bond stretching and bending in Fe:Ti-O6 octahedra. For the oxidized crystal, no obvious structural changes are observed below 16 kV/cm. Above 16 kV/cm, a sharp enhancement of the susceptibilities occurs due to local electrostrictive deformations in response to oxygen vacancy migrations away from the anode. Differences between …


Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf May 2016

Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf

FIU Electronic Theses and Dissertations

Ultra high temperature ceramics (UHTC) are candidate materials for high temperature applications such as leading edges for hypersonic flight vehicles, thermal protection systems for spacecraft, and rocket nozzle throat inserts due to their extremely high melting points. Tantalum and Niobium Carbide (TaC and NbC), with melting points of 3950°C and 3600°C, respectively, have high resistivity to chemical attack, making them ideal candidates for the harsh environments UHTCs are to be used in. The major setbacks to the implementation of UHTC materials for these applications are the difficulty in consolidating to full density as well as their low fracture toughness. In …


Devitrification Rates Of Fused Silica In The Presence Of Trace Impurities, Nicholas Kivi, Adrian Moore, Kayla Dyar, Samuel Haaf May 2016

Devitrification Rates Of Fused Silica In The Presence Of Trace Impurities, Nicholas Kivi, Adrian Moore, Kayla Dyar, Samuel Haaf

Chancellor’s Honors Program Projects

No abstract provided.


In-Situ Fracture Tests Of Brittle Materials At The Microscale, Giorgio Sernicola, Giovannini Tommaso, Rui Hao, T. Ben Britton, Finn Giuliani Oct 2015

In-Situ Fracture Tests Of Brittle Materials At The Microscale, Giorgio Sernicola, Giovannini Tommaso, Rui Hao, T. Ben Britton, Finn Giuliani

Nanomechanical Testing in Materials Research and Development V

The fracture toughness of ceramics is often dominated by the structure of their grain boundaries. Our ability to improve life of ceramic components depends on our ability to investigate properties of individual grain boundaries.

This requires development of new fracture testing methods allowing high spatial resolution and high control over the area to test. Further benefits of these ‘small scale’ approaches will enable testing of specimens for which big volumes are not available (e.g. thin films, coating, or simply samples of dimensions limited by production process).

Recently, several techniques have been developed using small scaled mechanical testing, based within a …


High Pressure Behavior Of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility And Microstructural Implications, Patricia Kalita May 2015

High Pressure Behavior Of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility And Microstructural Implications, Patricia Kalita

UNLV Theses, Dissertations, Professional Papers, and Capstones

Even though mullite occurs rarely in nature, it is perhaps one of the most important phases in both traditional and advanced ceramics. Existing and emerging applications of mullite and mullite-type materials include: high-temperature composites, aerospace materials, ballistic shielding for military applications and even non-linear optical materials. There are many uncertainties regarding the basic physical properties of mullite-type materials, particularly in terms of their high-pressure structural stability and mechanical behavior that are important to address for emerging applications of mullites as engineering materials. This work is the first reported comprehensive investigation of the high –pressure structural behavior of several different mullites …


Effect Of Ni-Nb Interlayer Thickness On Mechanical Property Of Hfb2 Composite Joints, Kou Honda, Noritaka Saito, Kunihiko Nakashima, Cesare Melandri, Laura Esposito Apr 2015

Effect Of Ni-Nb Interlayer Thickness On Mechanical Property Of Hfb2 Composite Joints, Kou Honda, Noritaka Saito, Kunihiko Nakashima, Cesare Melandri, Laura Esposito

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

No abstract provided.


An Oxidation Kinetic Analysis Of Hot Pressed Zirconium Carbide At High Temperature, Claudia Gasparrini, W.E. Lee, Richard Chater Apr 2015

An Oxidation Kinetic Analysis Of Hot Pressed Zirconium Carbide At High Temperature, Claudia Gasparrini, W.E. Lee, Richard Chater

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

No abstract provided.


Uhtc Composites: Processing, Performance And Future, Jon Binner Apr 2015

Uhtc Composites: Processing, Performance And Future, Jon Binner

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

No abstract provided.


Characterization Of Ultra High Temperature Ceramic Coatings Deposited By Vacuum Plasma Spraying, Diletta Sciti, Yeon Woo Yoo, Sea Hoon Lee Apr 2015

Characterization Of Ultra High Temperature Ceramic Coatings Deposited By Vacuum Plasma Spraying, Diletta Sciti, Yeon Woo Yoo, Sea Hoon Lee

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

No abstract provided.


Processing And Characterisation Of (Ta,Hf)C Ultra-High Temperature Ceramics., O. Cedillos, S. Grasso, D. Manara, D.D Jayaseelan, R. Konings, W.E. Lee Apr 2015

Processing And Characterisation Of (Ta,Hf)C Ultra-High Temperature Ceramics., O. Cedillos, S. Grasso, D. Manara, D.D Jayaseelan, R. Konings, W.E. Lee

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

No abstract provided.


Synthesis And Static Oxidation Testing Of Doped Hfb2 Powders, Pengxiang Zheng, Jon Binner, Bala Vaidhyanathan Apr 2015

Synthesis And Static Oxidation Testing Of Doped Hfb2 Powders, Pengxiang Zheng, Jon Binner, Bala Vaidhyanathan

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

No abstract provided.


Unification Of The Negative Electrocaloric Effect In Bi1/2Na1/2Tio3-Batio3 Solid Solutions By Ba1/2Sr1/2Tio3 Doping, Sarir Uddin, Guang-Ping Zheng, Yaseen Iqbal, Rick Ubic, Junhe Yang Dec 2013

Unification Of The Negative Electrocaloric Effect In Bi1/2Na1/2Tio3-Batio3 Solid Solutions By Ba1/2Sr1/2Tio3 Doping, Sarir Uddin, Guang-Ping Zheng, Yaseen Iqbal, Rick Ubic, Junhe Yang

Materials Science and Engineering Faculty Publications and Presentations

The microscopic mechanisms of the negative electrocaloric effect (ECE) of the single-phase (1−x)(0.94Bi1/2Na1/2TiO3-0.06BaTiO3)-xBa1/2Sr1/2TiO3 (BNT-BT-BST) perovskite solid solutions fabricated via the sol-gel technique are explored in this study. Dielectric and mechanical relaxation analyses are employed to investigate the ferroelectric and structural transitions of the samples. The electrocaloric properties of the samples were measured by thermodynamics Maxwell relations. The difference between the depolarization temperature (Td) and the maximum dielectric constant temperature (Tm) was found to decrease with increasing BST content. Doping with BST stabilized the …


Oxidation Of Borides And Carbides With Y2o3 And Ta Additions, Salvador Manuel Rodriguez Jan 2012

Oxidation Of Borides And Carbides With Y2o3 And Ta Additions, Salvador Manuel Rodriguez

Open Access Theses & Dissertations

The study presented here describes an investigation of an oxidation scale of a fully-sintered Y2O3-ZrB2-TiC composite exposed in air at 1173K. Upon oxidation of the boride/carbide, a ZrO2-TiO2 was expected to form similar to the ZrO2-SiO2 dual scale of an oxidized ZrB2-SiC. The 47wt% Y2O3-38wt%ZrB2-16wt%TiC composite formed a dual scale consisting primarily of an Y2O3-ZrO2-TiC inner scale with an outer scale of ZrO2-TiO2-Y2O3.

The samples oxidized with a parabolic layer growth allowing the calculation of the effective diffusion coefficient indicating that the oxidation was controlled by oxygen ingress through primarily the ZrO2-Y2O3 phase. The oxygen potential between the inner layer …


Understanding Materials, Petros J. Katsioloudis Jan 2010

Understanding Materials, Petros J. Katsioloudis

STEMPS Faculty Publications

The article discusses the importance of understanding the characteristics of materials that will be used for different applications. Through the years, the inventions and innovations in the technology of materials are becoming more technologically complex. Innovations in the materials are divided in different categories, including metals, ceramics, polymers and composites. Example of such innovations in the technology of materials include the ceramic composite applied to the surface of the space shuttle panels to absorb and release high amounts of heat.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2008

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert fuels containing ZrO2 and MgO as the inert matrix. Ceramics with this inert matrix, Ce, U and eventually Pu will be synthesized and examined. While the Advanced Fuel Cycle Initiative focus is on inert fuels with Pu as the fissile component, this task will perform initial laboratory experiments with Ce and U. The initial work with Ce will be performed early in the project with results used as a basis for U studies. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf. …


Production Of Bulk Ceramic Shapes From Polymer Derived Ceramics, Arnold Hill Jan 2008

Production Of Bulk Ceramic Shapes From Polymer Derived Ceramics, Arnold Hill

Electronic Theses and Dissertations

A method has been developed to produce bulk ceramic components from a class of ceramics known as polymer derived ceramics. In the past polymer derived ceramics have been limited to thin film applications or in the fabrication of MEMS devices. The reason being that when the polymer is into a ceramic, large quantities of gas are generated which produce internal pressure that fractures the ceramic components. The method developed here solves that issue by casting into the polymer a 3 dimensional network of polymer fibers in the form of a foam which, during pyrolysis, burns out and leaves a network …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2007

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert fuels containing ZrO2 and MgO as the inert matrix. Ceramics with this inert matrix, Ce, U and eventually Pu will be synthesized and examined. While the Advanced Fuel Cycle Initiative focus is on inert fuels with Pu as the fissile component, this task will perform initial laboratory experiments with Ce and U. The initial work with Ce will be performed early in the project with results used as a basis for U studies. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf. …


Ac Conductivity Relaxation Processes In Cacu₃Ti₄O₁₂ Ceramics: Grain Boundary And Domain Boundary Effects, Wei Li, Robert W. Schwartz Dec 2006

Ac Conductivity Relaxation Processes In Cacu₃Ti₄O₁₂ Ceramics: Grain Boundary And Domain Boundary Effects, Wei Li, Robert W. Schwartz

Materials Science and Engineering Faculty Research & Creative Works

The ac conductivity of CaCu₃Ti₄O₁₂ ceramics associated with electrical charge carrier motion (ions or vacancies) was investigated as a function of frequency at different temperatures. The long range migration of charge carriers within the ceramic is restricted by two kinds of insulating barriers, namely, grain boundaries and domain boundaries. The potential barriers associated with these boundaries lead to two anomalies in conductivity response and three frequency-dependent contributions to conductivity: long range diffusion of carriers, carrier migration localized within grains, and carrier migration localized within domains.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project examines inert fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations are used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics are synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, are investigated in a manner to provide thermodynamic data necessary for …


Maxwell-Wagner Relaxations And Their Contributions To The High Permittivity Of Calcium Copper Titanate Ceramics, Wei Li, Robert W. Schwartz Jan 2006

Maxwell-Wagner Relaxations And Their Contributions To The High Permittivity Of Calcium Copper Titanate Ceramics, Wei Li, Robert W. Schwartz

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Calcium copper titanate ceramics were fabricated by cold isostatic pressing at various calcination and sintering conditions. Depending on fabrication condition, three electrical responses were observed in the combined modulus and impedance plots, indicating the presence of two Maxwell-Wagner relaxations. These electrical responses show different response to temperature and applied field. The activation energies, as well as the driving force factors, were calculated for these relations. The determined activation energy values are in the range of 0.57 to 0.65 eV. The contribution of Maxwell-Wagner relaxations to the high permittivity of CCTO and related materials is briefly discussed.