Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Finite element method

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Mechanics of Materials

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi Jan 2024

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This paper presents fabrication, experimental testing, and progressive failure modeling to study the deformation of an ultra-thin composite beam. The research study examines the deformation modes of a post-deployed boom under repetitive pure bending loads using a four-point bending setup and …


Thermal Behavior Of Plain And Fiber-Reinforced Rigid Concrete Airfield Runways, Arash Karimi Pour May 2023

Thermal Behavior Of Plain And Fiber-Reinforced Rigid Concrete Airfield Runways, Arash Karimi Pour

Open Access Theses & Dissertations

The environmental condition and temperature gradient are important factors resulting in concrete airfield runways cracking during the time. Rigid concrete airfield runways experience different thermal gradients during the day and night due to changes in air temperature. Curling and thermal expansion stresses are the main consequences resulting in various types of cracking over the surface and thickness of concrete airfield runways and increasing maintenance costs. The curvature of concrete slabs increases with an increase in the temperature gradient which is amplified when runways open to traffic. Additionally, the combination of the curling and shrinkage stresses, in rare circumstances, can be …


Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu Jan 2019

Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this study is to characterize the micromechanical properties of poly-L-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 μm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus of …


Full Field Computing For Elastic Pulse Dispersion In Inhomogeneous Bars, A. Berezovski, R. Kolman, M. Berezovski, D. Gabriel, V. Adamek Jul 2018

Full Field Computing For Elastic Pulse Dispersion In Inhomogeneous Bars, A. Berezovski, R. Kolman, M. Berezovski, D. Gabriel, V. Adamek

Publications

In the paper, the finite element method and the finite volume method are used in parallel for the simulation of a pulse propagation in periodically layered composites beyond the validity of homogenization methods. The direct numerical integration of a pulse propagation demonstrates dispersion effects and dynamic stress redistribution in physical space on example of a one-dimensional layered bar. Results of numerical simulations are compared with analytical solution constructed specifically for the considered problem. Analytical solution as well as numerical computations show the strong influence of the composition of constituents on the dispersion of a pulse in a heterogeneous bar and …


Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu Jun 2018

Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Objective: Stenting is one of the major treatments for malignant esophageal cancer. However, stent migration compromises clinical outcomes. A flared end design of the stent diminishes its migration. The goal of this work is to quantitatively characterize stent migration to develop new strategies for better clinical outcomes.

Methods: An esophageal stent with flared ends and a straight counterpart were virtually deployed in an esophagus with asymmetric stricture using the finite element method. The resulted esophagus shape, wall stress, and migration resistance force of the stent were quantified and compared.

Results: The lumen gain for both the flared stent and the …


The Effect Of Number Of Corrugation On Crashworthiness Of Aluminum Corrugated Tube Under Lateral Loading, Hozhabr Mozafari, Arameh Eyvazian, Abdel Magid Hamouda Jan 2017

The Effect Of Number Of Corrugation On Crashworthiness Of Aluminum Corrugated Tube Under Lateral Loading, Hozhabr Mozafari, Arameh Eyvazian, Abdel Magid Hamouda

Department of Mechanical and Materials Engineering: Faculty Publications

Thin-walled tubes have been developed and are growing in use as new energy absorber structures. The objective of this study is to investigate the energy absorption and crushing characteristics of corrugated tubes with different number of corrugation in a specific length exposed to lateral loading. At the first step, experimental tests were carried out on a corrugated tube with three con'ugations (two inner and one outer) and a tube without corrugation. After that, a finite element model was developed by means of ABAQUS software in order to study the effect of corrugation number on crushing properties of thin-walled tubes. The …


Accommodation Of The Human Lens Capsule Using A Finite Element Model Based On Nonlinear Regionally Anisotropic Biomembranes, G. David, Ryan M. Pedrigi, J. D. Humphrey Jan 2017

Accommodation Of The Human Lens Capsule Using A Finite Element Model Based On Nonlinear Regionally Anisotropic Biomembranes, G. David, Ryan M. Pedrigi, J. D. Humphrey

Department of Mechanical and Materials Engineering: Faculty Publications

Accommodation of the eyes, the mechanism that allows humans to focus their vision on near objects, naturally diminishes with age via presbyopia. People who have undergone cataract surgery, using current surgical methods and artificial lens implants, are also left without the ability to accommodate. The process of accommodation is generally well known; however the specific mechanical details have not been adequately explained due to difficulties and consequences of performing in vivo studies. Most studies have modeled the mechanics of accommodation under assumptions of a linearly elastic, isotropic, homogenous lens and lens capsule. Recent experimental and numerical studies showed that the …


Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din Nov 2016

Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Piezoelectricity has proved effective in capturing changes in structures caused by various damage mechanisms. In one approach, piezoelectric wafer active sensors (PWAS) are mounted on the surface of the host structure and utilized as both actuators and sensors to interrogate the structure and monitor its health. This is achieved by subjecting the PWAS to a transient electric pulse and reading the resulting voltage. Changes in the stiffness of the substrate due to structural damage affect the response of the PWAS, which could be correlated to integrity of the structure. Applying this technique to fibrous composite laminates encounters particular challenges due …


A Multi-Scale Based Model For Composite Materials With Embedded Pzt Filaments For Energy Harvesting, A.E. El-Etriby, M.E. Abdel-Meguid, K.M. Shalan, Tarek Hatem, Yehia Bahei-El-Din Jan 2015

A Multi-Scale Based Model For Composite Materials With Embedded Pzt Filaments For Energy Harvesting, A.E. El-Etriby, M.E. Abdel-Meguid, K.M. Shalan, Tarek Hatem, Yehia Bahei-El-Din

Centre for Advanced Materials

Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested predicting the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to …


A Finite Element Evaluation Of An Experiment Related To Coating Damping Properties, Armando Deleon Mar 2009

A Finite Element Evaluation Of An Experiment Related To Coating Damping Properties, Armando Deleon

Theses and Dissertations

Typically turbine engine blades gain protection from thermal damage by the use of hard coatings, such as magnesium aluminate spinel. Known as Thermal Barrier Coatings (TBC's), they have material properties that include several nonlinearities. These TBC's create damping primarily due to their nonlinear dissipation of energy. In order to effectively represent their damping properties, it is necessary to create a method which combines experimentation and analysis. Previous work has shown the need for a beam bounded and loaded in such a fashion that external support energy dissipation functions i.e. boundary conditions and aerodynamics are eliminated. Thus, a new experimental apparatus …


An Experimental Technique For Developing Intermediate Strain Rates In Ductile Metals, Hugh E. Gardenier Iv Mar 2008

An Experimental Technique For Developing Intermediate Strain Rates In Ductile Metals, Hugh E. Gardenier Iv

Theses and Dissertations

Quantifying the strain-rate sensitive dynamic properties of structural materials is an important area of research in the solid mechanics field. Property evaluation is typically accomplished using dynamic tests which involve rapid loading or impact of specimens. In these tests, inertial forces and wave propagation make it difficult to accurately record the material response to a loading condition at an equivalent location. Furthermore, these tests typically generate high strain rates (in excess of 103 s−1) and an experimental method for generating rates of strain in the intermediate strain rate regime which is relatively simple, low cost, and reliable …


Matrix Structural Analysis, 2nd Edition, William Mcguire, Richard H. Gallagher, Ronald D. Ziemian Jan 2000

Matrix Structural Analysis, 2nd Edition, William Mcguire, Richard H. Gallagher, Ronald D. Ziemian

Faculty Books

The aims of the first edition of Matrix Structural Analysis were to place proper emphasis on the methods of matrix structural analysis used in practice and to lay the groundwork for more advanced subject matter. This extensively revised Second Edition accounts for changes in practice that have taken place in the intervening twenty years. It incorporates advances in the science and art of analysis that are suitable for application now, and will be of increasing importance in the years ahead. It is written to meet the needs of both the present and the coming generation of structural engineers.

KEY FEATURES …


Nonlinear Geometric And Material Behavior Of Composite Shells With Large Strains, Scott A. Schimmels Aug 1995

Nonlinear Geometric And Material Behavior Of Composite Shells With Large Strains, Scott A. Schimmels

Theses and Dissertations

A two-dimensional, geometrically and materially nonlinear shell theory applicable to arbitrary geometries described by orthogonal curvilinear coordinates and encompassing large displacements, moderate rotations for large strain situations has been developed. Additionally, the theory includes Jacobian transformation matrices, based upon displacement parameters, for the Cauchy - 2nd Piola-Kirchhoff stress-state and the Cauchy (Almansi) - Green strain-state transformations, and a layered material approach is included for the elastoplastic analysis to allow for variation of plasticity through-the-thickness. Doubly curved 20, 28, and 36 degree-of-freedom finite elements are defined based on specialization of the theory to spherical coordinates. The computer program includes algorithms for …