Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Texas at El Paso

2016

Oxidation

Articles 1 - 2 of 2

Full-Text Articles in Mechanics of Materials

Mechanically Activated Combustion Synthesis Of Molybdenum Borosilicides For Ultrahigh-Temperature Structural Applications, Alan Alberto Esparza Hernandez Jan 2016

Mechanically Activated Combustion Synthesis Of Molybdenum Borosilicides For Ultrahigh-Temperature Structural Applications, Alan Alberto Esparza Hernandez

Open Access Theses & Dissertations

The desire to improve the efficiency of power generation gas-turbines has led to a relentless quest for new, ultrahigh-temperature structural materials to replace the current nickel-based superalloys. These materials have reached the maximum allowable operating temperature determined by the melting temperature of these alloys, which is about 1150 °C. These materials could be replaced by molybdenum silicides and borosilicides based on Mo5SiB 2 (T2) phase due to their high melting point and mechanical properties. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at elevated temperatures. One novel approach to improve these properties is …


Investigation Of Ti-6al-4v Alloy Response To Atmospheric Re-Entry Exposure, Jessica Lynn Buckner Jan 2016

Investigation Of Ti-6al-4v Alloy Response To Atmospheric Re-Entry Exposure, Jessica Lynn Buckner

Open Access Theses & Dissertations

Ti-6Al-4V is a widely used aerospace alloy for its high strength-to-weight ratio and high operating temperature properties. Despite widespread use, titanium and its alloys have been shown to ignite in oxygen and nitrogen rich test streams. The reactivity of titanium is attributed to the high solubility for oxygen that increases with temperature, accelerating the oxidation rate and resulting in a combustion reaction. When introduced to the monatomic oxygen rich and high enthalpy re-entry environment, Ti-6Al-4V X-link components from the space shuttle Columbia exhibited accelerated oxidation and combustion behavior. Ti-6Al-4V metal plates tested in the simulated re-entry environment of an arc-jet …