Open Access. Powered by Scholars. Published by Universities.®

Engineering Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 28 of 28

Full-Text Articles in Engineering Mechanics

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay Jun 2021

Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay

Theses and Dissertations

Wind energy is considered one of the major sources of renewable energy. Nowadays, wind turbine blades could exceed 100 m to maximize the generated power and minimize produced energy cost. Due to the enormous size of the wind turbines, the blades are subjected to failure by aerodynamics loads or instability issues. Also, the gravitational and centrifugal loads affect the wind turbine design because of the huge mass of the blades. Accordingly, wind turbine simulation became efficient in blade design to reduce the cost of its manufacturing. The fluid-structure interaction (FSI) is considered an effective way to study the turbine's behavior …


Development Of High-Density Propulsion System Technologies For Interplanetary Small Satellites And Cubesats, Morgan Andrew Roddy Jul 2020

Development Of High-Density Propulsion System Technologies For Interplanetary Small Satellites And Cubesats, Morgan Andrew Roddy

Graduate Theses and Dissertations

The goal of this research was to support the development of a novel propulsion system for small satellites (<180 kg) and CubeSats. This was pursued by conducting a collection of studies that were designed to provide engineering data that would be critical in designing a functional prototype. The novel propulsion system was conceived by the author to provide best-in-class performance for the small satellite and CubeSat families of spacecraft. This context presents specific design requirements that the presented technology attempts to satisfy. The most critical among these is high density; the propellant was designed to be stored with high density and the thruster was designed to be as compact as possible. The propulsion system is composed of two primary elements, a propellant generator and a thruster. The propellant generator works by sublimating a solid crystal into vapor and then using this vapor to etch a dense metal. The resulting gaseous byproducts of this reaction are the propellant. This dissertation used xenon difluoride (XeF2) vapor to etch tungsten (W) which react to form xenon gas (Xe) and tungsten hexafluoride (WF6). This approach gave a theoretical propellant storage density 5.40 g/cm3; and 5.17 g/cm3 was demonstrated. The sublimation dynamics of the XeF2 were studied as a function of surface area and temperature and it was found to be suitable for the intended application due to its high effluence rate; that is, it sublimates fast enough to be useful. The sublimation rates are on the order of 10’s of µg/s. The etch rate of XeF2 on W was also studied and found to be suitably fast to provide useful amounts of reactants for use as a propellant, again on the order of 1’s of µg/s. The thruster is an electrostatic radio frequency (RF) ion thruster design and is manufactured with Low Temperature Co-Fired Ceramic (LTCC) materials system and manufacturing technology. Manufacturing samples of the thruster were built at the University of Arkansas in July 2015 and tested at NASA’s Marshall Space Flight Center in May 2018. Testing validated the viability of the LTCC thruster and provided valuable information on how to improve the thruster’s design.


Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown Jan 2020

Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown

Theses and Dissertations--Mechanical Engineering

Finish machining is an essential manufacturing process that is used to enhance the mechanical characteristics of critical components. The deformation that occurs at the tool and workpiece interface in finish machining significantly affects a host of component properties, commonly referred to as “surface integrity” properties. Surface roughness is a machining deformation-affected characteristic that is of high relevance in contemporary manufacturing. However, over recent decades it has been made clear that the material properties of the deformed surface layers are relevant to component performance as well. Predicting the overall surface quality of a machined component is of great relevance to the …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran Jan 2019

Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran

UNF Graduate Theses and Dissertations

The primary objective of this research is to formulate a methodology of assessing the maximum impact loading condition that will incur onto an aircraft’s landing gear system via Finite Element Analysis (FEA) and appropriately determining its corresponding structural and impact responses to minimize potential design failures during hard landing (abnormal impact) and shock absorption testing. Both static and dynamic loading condition were closely analyzed, compared, and derived through the Federal Aviation Administration’s (FAA) airworthiness regulations and empirical testing data.

In this research, a nonlinear transient dynamic analysis is developed and established via NASTRAN advanced nonlinear finite element model (FEM) to …


Fe Modeling Methodology For Load Analysis And Preliminary Sizing Of Aircraft Wing Structure, Jun Hwan Jang, Sang Ho Ahn Jan 2019

Fe Modeling Methodology For Load Analysis And Preliminary Sizing Of Aircraft Wing Structure, Jun Hwan Jang, Sang Ho Ahn

International Journal of Aviation, Aeronautics, and Aerospace

It is a critical part at the basic design phase of aircraft structural design to build a finite element model and it will have a direct impact on time and cost for airframe structure development. In addition, the objective of finite element model will be varied depending on each design review phase and the modelling methodology varied accordingly. In order to build an effective and economic finite element model, it is required to develop adequate level of modelling methodology based on each design phase and its objectives. Therefore, in this paper, the finite element modeling methodology was presented for internal …


Thermal-Fatigue And Thermo-Mechanical Equivalence For Transverse Cracking Evolution In Laminated Composites, Javier Cabrera Barbero Jan 2018

Thermal-Fatigue And Thermo-Mechanical Equivalence For Transverse Cracking Evolution In Laminated Composites, Javier Cabrera Barbero

Graduate Theses, Dissertations, and Problem Reports

Carbon fiber reinforced plastics (CFRP) are potential materials for many aerospace and aeronautical applications due to their high specif strength/weight and a low coeffcient of thermal expansion (CTE) resulting in a high long-term stability. Among candidate structures, the re-entry reusable launch vehicles (RLV), the fuel oxidant storage and transportation at cryogenic temperature, space satellites, and aircraft structure (frame, wings, etc...) can be highlighted. However, CFRP are prone to internal damage as a result of high residual stresses and thermal fatigue loading. In this study, micro-cracking damage evolution in laminated composites subjected to monotonic cooling and thermal cyclic loads is developed …


A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim Dec 2017

A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim

Master's Theses

A Comparison Study of Composite Laminated Plates with Holes under Tension

A study was conducted to quantify the accuracy of numerical approximations to deem sufficiency in validating structural composite design, thus minimizing, or even eliminating the need for experimental test. Error values for stress and strain were compared between Finite Element Analysis (FEA) and analytical (Classical Laminated Plate Theory), and FEA and experimental tensile test for two composite plate designs under tension: a cross-ply composite plate design of [(0/90)4]s, and a quasi-isotropic layup design of [02/+45/-45/902]s, each with a single, centered hole of 1/8” diameter, and 1/4" diameter (four sets …


Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins Jan 2017

Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins

Theses and Dissertations--Civil Engineering

The Analytical Strip Method (ASM) for the analysis of thin cylindrical shells is presented in this dissertation. The system of three governing differential equations for the cylindrical shell are reduced to a single eighth order partial differential equation (PDE) in terms of a potential function. The PDE is solved as a single series form of the potential function, from which the displacement and force quantities are determined. The solution is applicable to isotropic, generally orthotropic, and laminated shells. Cylinders may have simply supported edges, clamped edges, free edges, or edges supported by isotropic beams. The cylindrical shell can be stiffened …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din Nov 2016

Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Piezoelectricity has proved effective in capturing changes in structures caused by various damage mechanisms. In one approach, piezoelectric wafer active sensors (PWAS) are mounted on the surface of the host structure and utilized as both actuators and sensors to interrogate the structure and monitor its health. This is achieved by subjecting the PWAS to a transient electric pulse and reading the resulting voltage. Changes in the stiffness of the substrate due to structural damage affect the response of the PWAS, which could be correlated to integrity of the structure. Applying this technique to fibrous composite laminates encounters particular challenges due …


Suborbital Spaceflight: A Student Team’S Plan To Send A Rocket To Space, Bryce Chanes, William Carpenter, Julio Benavides, Matthew Haslam, Brenda Haven Jan 2015

Suborbital Spaceflight: A Student Team’S Plan To Send A Rocket To Space, Bryce Chanes, William Carpenter, Julio Benavides, Matthew Haslam, Brenda Haven

Aviation / Aeronautics / Aerospace International Research Conference

The Eagle Space Flight Team was created with the goal of becoming the first undergraduate team to design, build, and launch a rocket capable of suborbital spaceflight. In order to achieve this goal, the team will have to design a rocket capable of atmospheric flight at speeds over Mach 5 and launch it on one of the largest amateur rocket motors ever made. Over the next three years, the team will progress towards accomplishing this feat through a series of incremental test flights. Before the space flight, the team will build three sub-scale rockets designed to reach altitudes of 30,000’, …


A Multi-Scale Based Model For Composite Materials With Embedded Pzt Filaments For Energy Harvesting, A.E. El-Etriby, M.E. Abdel-Meguid, K.M. Shalan, Tarek Hatem, Yehia Bahei-El-Din Jan 2015

A Multi-Scale Based Model For Composite Materials With Embedded Pzt Filaments For Energy Harvesting, A.E. El-Etriby, M.E. Abdel-Meguid, K.M. Shalan, Tarek Hatem, Yehia Bahei-El-Din

Centre for Advanced Materials

Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested predicting the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to …


The Formulation And Computation Of The Nonlocal J-Integral In Bond-Based Peridynamics, Wenke Hu, Youn Doh Ha, Florin Bobaru, Stewart A. Silling Jul 2013

The Formulation And Computation Of The Nonlocal J-Integral In Bond-Based Peridynamics, Wenke Hu, Youn Doh Ha, Florin Bobaru, Stewart A. Silling

Florin Bobaru Ph.D.

This work presents a rigorous derivation for the formulation of the J-integral in bond-based peridynamics using the crack infinitesimal virtual extension approach. We give a detailed description of an algorithm for computing this nonlocal version of the J-integral.We present convergence studies (m-convergence and δ-convergence) for two different geometries: a single edge-notch configuration and a double edge-notch sample.We compare the results with results based on the classical J-integral and obtained from FEM calculations that employ special elements near the crack tip.We identify the size of the nonlocal region for which the peridynamic J-integral value is near the classical FEM solutions.We discuss …


The Meaning, Selection, And Use Of The Peridynamic Horizon And Its Relation To Crack Branching In Brittle Materials, Florin Bobaru, Wenke Hu Jul 2013

The Meaning, Selection, And Use Of The Peridynamic Horizon And Its Relation To Crack Branching In Brittle Materials, Florin Bobaru, Wenke Hu

Florin Bobaru Ph.D.

This note discusses the peridynamic horizon (the nonlocal region around a material point), its role, and practical use in modeling. The objective is to eliminate some misunderstandings and misconceptions regarding the peridynamic horizon. An example of crack branching in a nominally brittle material (homalite) is addressed and we show that crack branching takes place without wave interaction. We explain under what conditions the crack propagation speed depends on the horizon size and the role of incident stress waves on this speed.


Crack Nucleation In A Peridynamic Solid, S. Silling, O. Weckner, E. Askari, Florin Bobaru Jul 2013

Crack Nucleation In A Peridynamic Solid, S. Silling, O. Weckner, E. Askari, Florin Bobaru

Florin Bobaru Ph.D.

A condition for the emergence of a discontinuity in an elastic peridynamic body is proposed, resulting in a material stability condition for crack nucleation. The condition is derived by determining whether a small discontinuity in displacement, superposed on a possibly large deformation, grows over time. Stability is shown to be determined by the sign of the eigenvalues of a tensor field that depends only on the linearized material properties. This condition for nucleation of a discontinuity in displacement can be interpreted in terms of the dynamic stability of plane waves with very short wavelength. A numerical example illustrates that cracks …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jul 2013

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Florin Bobaru Ph.D.

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher Aug 2012

A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher

Master's Theses

This research effort explored the possibility of using interwoven conductive and nonconductive fibers in a composite laminate for structural health monitoring (SHM). Traditional SHM systems utilize fiber optics, piezoelectrics, or detect defects by nondestructive test methods by use of sonar graphs or x-rays. However, these approaches are often expensive, time consuming and complicated.

The primary objective of this research was to apply a resistance based method of structural health monitoring to a composite structure to determine structural integrity and presence of defects.

The conductive properties of fiber such as carbon, copper, or constantan - a copper-nickel alloy - can be …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jan 2010

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


Multiscale Transformation Field Analysis Of Progressive Damage In Fibrous Laminates, Yehia Bahei-El-Din, Ritesh Khire, Prabhat Hajela Jan 2010

Multiscale Transformation Field Analysis Of Progressive Damage In Fibrous Laminates, Yehia Bahei-El-Din, Ritesh Khire, Prabhat Hajela

Centre for Advanced Materials

As part of an ongoing effort to model uncertainty propagation across multiple scales in fibrous laminates, this paper presents a deterministic transformation field analysis for modeling damage progression under membrane forces and bending moments. In this approach, equivalent eigenstresses are computed in the phases and/or plies such that their respective stress components that satisfy the underlying failure criteria are reduced to zero. Superposition of the solutions found for the undamaged laminate under applied loads and under the eigenstress field provide the entire response. Failure criteria are based on stress averages in the fiber and matrix. Damage mechanisms considered are frictional …


Modified Sandwich Structures For Improved Impact Resistance Of Wind Turbine Blades, Yehia Bahei-El-Din, Mostafa Shazly, I. El-Habbal, Y. Elbahy Jan 2010

Modified Sandwich Structures For Improved Impact Resistance Of Wind Turbine Blades, Yehia Bahei-El-Din, Mostafa Shazly, I. El-Habbal, Y. Elbahy

Centre for Advanced Materials

Wind turbine blades are susceptible to damage due to fatigue as well as impact by flying objects and parts broken off failed blades of nearby wind towers. Localized, permanent compression of the foam core and delamination of the fibrous composite face sheets are typical damage modes and can lead to progressive structural failure. Sandwich structures modified by inclusion of flexible polyurethane (PU) layers within the cross section are examined under both impact and dynamic loads. Finite element models of sandwich structures with conventional and modified designs show that sandwich designs modified with PU interlayes exhibit reduced foam core crushing and …


Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza Apr 2009

Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Multiscale computational techniques play a major role in solving problems related to viscoelastic composite materials due to the complexities inherent to these materials. In the present work, a numerical procedure for multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks is proposed in which the (global scale) homogenized viscoelastic incremental constitutive equations have the same form as the local scale viscoelastic incremental constitutive equations, but the homogenized tangent constitutive tensor and the homogenized incremental history dependent stress tensor depend on the amount of damage accumulated at the local scale. Furthermore, the developed technique allows the computation of the …


Large Amplitude Pitching Of Supermaneuver Delta Wings Including Flow Control, Yahia A. Abdelhamid Jul 1999

Large Amplitude Pitching Of Supermaneuver Delta Wings Including Flow Control, Yahia A. Abdelhamid

Mechanical & Aerospace Engineering Theses & Dissertations

The unsteady, three-dimensional Navier-Stokes equations are solved to simulate and study the aerodynamic response of a delta wing undergoing large amplitude pitching motion up to 90° angle of attack. The primary model under consideration consists of a 76° swept, sharp-edged delta wing of zero thickness, initially at zero angle of attack. The freestream Mach number and Reynolds number are 0.3 and 0.45 × 106, respectively. The governing equations are solved time-accurately using the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. Both laminar and turbulent flow solutions are investigated. In the laminar flow solutions, validation of the computational results is carried …


Efficient Dynamic Unstructured Methods And Applications For Transonic Flows And Hypersonic Stage Separation, Xiaobing Luo Jan 1999

Efficient Dynamic Unstructured Methods And Applications For Transonic Flows And Hypersonic Stage Separation, Xiaobing Luo

Mechanical & Aerospace Engineering Theses & Dissertations

Relative-moving boundary problems have a wide variety of applications. They appear in staging during a launch process, store separation from a military aircraft, rotor-stator interaction in turbomachinery, and dynamic aeroelasticity.

The dynamic unstructured technology (DUT) is potentially a strong approach to simulate unsteady flows around relative-moving bodies, by solving time-dependent governing equations. The dual-time stepping scheme is implemented to improve its efficiency while not compromising the accuracy of solutions. The validation of the implicit scheme is performed on a pitching NACA0012 airfoil and a rectangular wing with low reduced frequencies in transonic flows. All the matured accelerating techniques, including the …


Placement Of Piezoelectric Actuators For Active Control Of Vibration Using Modal Parameters, Xuegeng Zhu Jan 1998

Placement Of Piezoelectric Actuators For Active Control Of Vibration Using Modal Parameters, Xuegeng Zhu

Mechanical & Aerospace Engineering Theses & Dissertations

An equation is derived to model the piezoelectric actuators incorporation with flexible structures. This equation permits the comparison of the performance indices over the entire structure for a piezoelectric actuator with constant area, which is unachievable if the Finite Element Method is used for complicated structures.

An index has been developed for placement of piezoelectric actuator for control of vibration of a flexible structure. This index is derived from the definition of H2norm. Computation of the proposed index requires only the natural frequencies and corresponding mode shapes of the structures of interest. The method is well suited to large …


Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue Oct 1991

Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue

Mechanical & Aerospace Engineering Theses & Dissertations

A frequency domain solution method for nonlinear panel flutter with thermal effects using a consistent finite element formulation has been developed. The von Karman nonlinear strain-displacement relation is used to account for large deflections, the quasi-steady first-order piston theory is employed for aerodynamic loading and the quasi-steady thermal stress theory is applied for the thermal stresses with a given change of the temperature distribution, ΔΤ (x, y, z). The equation of motion under a combined thermal-aerodynamic loading can be mathematically separated into two equations and then solved in sequence: (1) thermal-aerodynamic postbuckling and (2) limit-cycle oscillation. The Newton-Raphson iteration technique …