Open Access. Powered by Scholars. Published by Universities.®

Engineering Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 57

Full-Text Articles in Engineering Mechanics

The Influence Of Heat And Mass Transfer On The Setting Rate Of Adhesives Between Porous Substrates, Mubarak Mohammed Khlewee May 2023

The Influence Of Heat And Mass Transfer On The Setting Rate Of Adhesives Between Porous Substrates, Mubarak Mohammed Khlewee

Electronic Theses and Dissertations

The dynamic penetration of fluid into a porous media where other changes are occurring such as temperature or concentration is of interest to a number of situations. However, little experimental and theoretical analysis of this situation is found in the literature where most of the previously published works have studied the penetration with constant physical properties, where there is no change of the fluid as it enters the pores. This situation is important in the setting of adhesives in porous medium such as in the setting of hot melt and water-based adhesives in the production of paper based packaging. The …


Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin May 2023

Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin

All Dissertations

Inverse problems involve extracting the internal structure of a physical system from noisy measurement data. In many fields, the Bayesian inference is used to address the ill-conditioned nature of the inverse problem by incorporating prior information through an initial distribution. In the nonparametric Bayesian framework, surrogate models such as Gaussian Processes or Deep Neural Networks are used as flexible and effective probabilistic modeling tools to overcome the high-dimensional curse and reduce computational costs. In practical systems and computer models, uncertainties can be addressed through parameter calibration, sensitivity analysis, and uncertainty quantification, leading to improved reliability and robustness of decision and …


Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock May 2022

Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock

Electronic Theses and Dissertations

This work focuses on evaluating different modeling approaches and model parameters for thermoplastic AM, with the goal of informing more efficient and effective modeling approaches. First, different modeling approaches were tested and compared to experiments. From this it was found that all three of the modeling approaches provide comparable results and provide similar results to experiments. Then one of the modeling approaches was tested on large scale geometries, and it was found that the model results matched experiments closely. Then the effect of different material properties was evaluated, this was done by performing a fractional factorial design of experiments where …


Influence Of Extracellular Matrix Stiffness And Topography On Neuronal Cell Behavior And Neurite Outgrowth, Mohan Yasodharababu Jul 2021

Influence Of Extracellular Matrix Stiffness And Topography On Neuronal Cell Behavior And Neurite Outgrowth, Mohan Yasodharababu

Graduate Theses and Dissertations

The focus of regeneration therapy for traumatic brain injuries and Alzheimer's disease is on the promotion and growth of neuronal cells. In vitro research attempts to improve this by modifying the stiffness and topography of the extracellular matrix (ECM). However, the limitations of in vitro experiments make it difficult to control the individual factors influencing neuronal cell growth. A computational model can be used to decouple individual factors and study them individually to gain a better understanding of the mechanics between the neuronal cell and ECM, which will aid in the design of in vitro experimental studies.

This study develops …


Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay Jun 2021

Fluid-Structure Interaction Of Nrel 5-Mw Wind Turbine, Mohamed Sayed Elkady Abd-Elhay

Theses and Dissertations

Wind energy is considered one of the major sources of renewable energy. Nowadays, wind turbine blades could exceed 100 m to maximize the generated power and minimize produced energy cost. Due to the enormous size of the wind turbines, the blades are subjected to failure by aerodynamics loads or instability issues. Also, the gravitational and centrifugal loads affect the wind turbine design because of the huge mass of the blades. Accordingly, wind turbine simulation became efficient in blade design to reduce the cost of its manufacturing. The fluid-structure interaction (FSI) is considered an effective way to study the turbine's behavior …


A Single-Stage Passive Vibration Isolation System For Scanning Tunneling Microscopy, Toan T. Le Feb 2021

A Single-Stage Passive Vibration Isolation System For Scanning Tunneling Microscopy, Toan T. Le

Master's Theses

Scanning Tunneling Microscopy (STM) uses quantum tunneling effect to study the surfaces of materials on an atomic scale. Since the probe of the microscope is on the order of nanometers away from the surface, the device is prone to noises due to vibrations from the surroundings. To minimize the random noises and floor vibrations, passive vibration isolation is a commonly used technique due to its low cost and simpler design compared to active vibration isolation, especially when the entire vibration isolation system (VIS) stays inside an Ultra High Vacuum (UHV) environment. This research aims to analyze and build a single-stage …


Computational Modeling Of Laminated Veneer Bamboo (Lvb) Dowel Joints, Niloufar Khoshbakht Feb 2020

Computational Modeling Of Laminated Veneer Bamboo (Lvb) Dowel Joints, Niloufar Khoshbakht

Doctoral Dissertations

Laminated veneer bamboo (LVB) is a sustainable building material that has been gaining interest in the construction industry of late. As a relatively new product, little is known about its connection performance, specifically, its failure behavior in dowel type joints and possible similarities it may have to engineered wood products in terms of failure mechanisms. Research is needed to aid in the understanding of LVB dowel connection failure behavior and to quantify the failure mechanism and key factors associated with LVB dowel connection strength. Modeling, as conducted in this research, is a valuable tool to help devise safe standards and …


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira Sep 2018

Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira

Journal of Applied Packaging Research

Packages made of corrugated paper are fundamental to the protection, transportation and handling of the appliance product market. During the storage and sales stages of a product, the package must resist compressive loads in different directions beyond moderate impacts. In this context, the objective of this work is to develop and implement a post-processor that allows the simultaneous analysis of two of the most common failure modes of packages made of corrugated paper: failure due to tensile or compressive stress limit, and failure due to local buckling, when the buckling of the faces of the corrugated paper between two peaks …


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian Jun 2018

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is …


Experimental Investigation Of And Constitutive Model For The Thermo-Poro-Mechanical Deformation Of Granular Salt Under Hydrostatic Compression, Brandon C. Lampe Mar 2018

Experimental Investigation Of And Constitutive Model For The Thermo-Poro-Mechanical Deformation Of Granular Salt Under Hydrostatic Compression, Brandon C. Lampe

Civil Engineering ETDs

The influence of pore pressure and porosity on the ductile deformation of granular salt was experimentally investigated under hydrostatic compression. Confining and pore pressures were independently controlled while granular salt samples exhibited rate-dependent deformation that resulted in large decreases of sample volume and porosity. The sample deformation rates were observed to correspond with both the sample porosity and the pressure difference between the confining and pore pressures. Post-test observations revealed that the reduced porosity was caused by the solid particles deforming in a ductile manner. Insight into the cause of ductile deformation was gained by considering the local stress distribution …


C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski Jan 2017

C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski

Wojciech Budzianowski

-


Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski Jan 2017

Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din Nov 2016

Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Piezoelectricity has proved effective in capturing changes in structures caused by various damage mechanisms. In one approach, piezoelectric wafer active sensors (PWAS) are mounted on the surface of the host structure and utilized as both actuators and sensors to interrogate the structure and monitor its health. This is achieved by subjecting the PWAS to a transient electric pulse and reading the resulting voltage. Changes in the stiffness of the substrate due to structural damage affect the response of the PWAS, which could be correlated to integrity of the structure. Applying this technique to fibrous composite laminates encounters particular challenges due …


Numerical Modeling And Seismic Assessment Of Smart Isolation System For High-Speed Railway Rc Bridge Subjected To Near-Field Ground Motions, Lingkun Chen Oct 2016

Numerical Modeling And Seismic Assessment Of Smart Isolation System For High-Speed Railway Rc Bridge Subjected To Near-Field Ground Motions, Lingkun Chen

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Assessment Of High Cycle Fatigue Crack Growth Under Different Stages Based On Crystal Plasticity Modeling, Duoqi Shi, Shiwei Han, Xiaoguang Yang Oct 2016

Assessment Of High Cycle Fatigue Crack Growth Under Different Stages Based On Crystal Plasticity Modeling, Duoqi Shi, Shiwei Han, Xiaoguang Yang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski Jan 2016

Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski

Wojciech Budzianowski

-


Inżynieria Chemiczna Lab., Wojciech M. Budzianowski Jan 2016

Inżynieria Chemiczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

-


A Multi-Scale Based Model For Composite Materials With Embedded Pzt Filaments For Energy Harvesting, A.E. El-Etriby, M.E. Abdel-Meguid, K.M. Shalan, Tarek Hatem, Yehia Bahei-El-Din Jan 2015

A Multi-Scale Based Model For Composite Materials With Embedded Pzt Filaments For Energy Harvesting, A.E. El-Etriby, M.E. Abdel-Meguid, K.M. Shalan, Tarek Hatem, Yehia Bahei-El-Din

Centre for Advanced Materials

Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested predicting the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to …


Inżynieria Chemiczna Ćw., Wojciech M. Budzianowski Jan 2015

Inżynieria Chemiczna Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

-


Tematyka Prac Doktorskich, Wojciech M. Budzianowski Jan 2015

Tematyka Prac Doktorskich, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Zespół Energii Odnawialnej I Zrównoważonego Rozwoju (Eozr), Wojciech M. Budzianowski Dec 2014

Zespół Energii Odnawialnej I Zrównoważonego Rozwoju (Eozr), Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Termodynamika Procesowa I Techniczna Lab., Wojciech M. Budzianowski Jan 2014

Termodynamika Procesowa I Techniczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tematyka Prac Dyplomowych Dla Studentów Wydziału Mechaniczno-Energetycznego Pwr., Wojciech M. Budzianowski Jan 2014

Tematyka Prac Dyplomowych Dla Studentów Wydziału Mechaniczno-Energetycznego Pwr., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tematyka Prac Dyplomowych Dla Studentów Wydziału Chemicznego Pwr., Wojciech M. Budzianowski Jan 2014

Tematyka Prac Dyplomowych Dla Studentów Wydziału Chemicznego Pwr., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Mechanika Płynów Lab., Wojciech M. Budzianowski Jan 2014

Mechanika Płynów Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


The Meaning, Selection, And Use Of The Peridynamic Horizon And Its Relation To Crack Branching In Brittle Materials, Florin Bobaru, Wenke Hu Jul 2013

The Meaning, Selection, And Use Of The Peridynamic Horizon And Its Relation To Crack Branching In Brittle Materials, Florin Bobaru, Wenke Hu

Florin Bobaru Ph.D.

This note discusses the peridynamic horizon (the nonlocal region around a material point), its role, and practical use in modeling. The objective is to eliminate some misunderstandings and misconceptions regarding the peridynamic horizon. An example of crack branching in a nominally brittle material (homalite) is addressed and we show that crack branching takes place without wave interaction. We explain under what conditions the crack propagation speed depends on the horizon size and the role of incident stress waves on this speed.


Convergence, Adaptive Refinement, And Scaling In 1d Peridynamics, Florin Bobaru Ph.D., Mijia Yabg Ph.D., Leonardo F. Alves M.S., Stewart A. Silling Ph.D., Ebrahim Askari Ph.D., Jifeng Xu Ph.D. Jul 2013

Convergence, Adaptive Refinement, And Scaling In 1d Peridynamics, Florin Bobaru Ph.D., Mijia Yabg Ph.D., Leonardo F. Alves M.S., Stewart A. Silling Ph.D., Ebrahim Askari Ph.D., Jifeng Xu Ph.D.

Florin Bobaru Ph.D.

We introduce here adaptive refinement algorithms for the non-local method peridynamics, which was proposed (in J. Mech. Phys. Solids 2000; 48:175–209) as a reformulation of classical elasticity for discontinuities and long-range forces. We use scaling of the micromodulus and horizon and discuss the particular features of adaptivity in peridynamics for which multiscale modeling and grid refinement are closely connected. We discuss three types of numerical convergence for peridynamics and obtain uniform convergence to the classical solutions of static and dynamic elasticity problems in 1D in the limit of the horizon going to zero. Continuous micromoduli lead to optimal rates of …


Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D. Jul 2013

Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D.

Florin Bobaru Ph.D.

The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as ‘long-range’. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical …