Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 3117

Full-Text Articles in Engineering Science and Materials

Multi-Well Plate Channel Device With Reversible Seals, Haipeng Zhang, Timothy Wei, Sangjin Ryu Jan 2020

Multi-Well Plate Channel Device With Reversible Seals, Haipeng Zhang, Timothy Wei, Sangjin Ryu

Mechanical & Materials Engineering Faculty Publications

Atherosclerosis is a cardiovascular disease which causes over 26,000 yearly deaths in the United States. This disease involves accumulation of substances in arterial walls (or plaques) that occurs frequently to arterial regions experiencing low shear stress, such as bends and bifurcations. A possible reason of plaque growth in arterial walls is the change of endothelial cell (EC)’s shape, which is related to fluid shear stresses tangentially acting on intimal layer (the EC surface) of the arterial wall. Lambert et al. studied the relationship between EC shape and shear stress (Lambert et al., 2019) using a BioFlux system (Fluxion ...


Nanothermomechanical And And Or Logic Gates, Ahmed Hamed, Sidy Ndao Jan 2020

Nanothermomechanical And And Or Logic Gates, Ahmed Hamed, Sidy Ndao

Mechanical & Materials Engineering Faculty Publications

Today’s electronics cannot perform in harsh environments (e.g., elevated temperatures and ionizing radiation environments) found in many engineering applications. Based on the coupling between near-field thermal radiation and MEMS thermal actuation, we presented the design and modeling of NanoThermoMechanical AND, OR, and NOT logic gates as an alternative, and showed their ability to be combined into a full thermal adder to perform complex operations. in this work, we introduce the fabrication and characterization of the first ever documented Thermal AND and OR logic gates. Theresults show thermal logic operations can be achieved successfully through demonstrated and easy-to- manufacture ...


Three-Dimensional Characterization Of Peripapillary Retinal Pigment Epithelium-Basement Membrane Layer In Patients Following Lumbar Puncture, Junfei Tong, Pengfei Dong, Sachin Kedar, Deepta Ghate, Linxia Gu Jan 2020

Three-Dimensional Characterization Of Peripapillary Retinal Pigment Epithelium-Basement Membrane Layer In Patients Following Lumbar Puncture, Junfei Tong, Pengfei Dong, Sachin Kedar, Deepta Ghate, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Purpose: To develop and test an innovative semi-automatic method for quantifying the three-dimensional morphology of the peripapillary retinal pigment epithelium-basement membrane (ppRPE/BM) layer, with application to lumbar puncture (LP) patients. Methods: Nineteen patients undergoing LP were recruited. The optic nerve head images of both eyes were acquired in 12 radial directions using optical coherence tomography (OCT) before and after LP. For each OCT image, the ppRPE/BM layer was automatically segmented with manual corrections by independent graders when necessary. The linear regression model of the ppRPE/BM layer was fitted using the least squares approach, and the ppRPE/BM ...


Additive Manufacturing Of Magnesium Alloys, Rakeshkumar Karunakaran, Sam Ortgies, Ali Tamayol, Florin Bobaru, Michael P. Sealy Jan 2020

Additive Manufacturing Of Magnesium Alloys, Rakeshkumar Karunakaran, Sam Ortgies, Ali Tamayol, Florin Bobaru, Michael P. Sealy

Mechanical & Materials Engineering Faculty Publications

Magnesium alloys are a promising new class of degradable biomaterials that have a similar stiffness to bone, which minimizes the harmful effects of stress shielding. Use of biodegradable magnesium implants eliminates the need for a second surgery for repair or removal. There is a growing interest to capitalize on additive manufacturing's unique design capabilities to advance the frontiers of medicine. However, magnesium alloys are difficult to 3D print due to the high chemical reactivity that poses a combustion risk. Furthermore, the low vaporization temperature of magnesium and common biocompatible alloying elements further increases the difficulty to print fully dense ...


Passivation Of Defects In Perovskite Materials For Improved Solar Cell Efficiency And Stability, Jinsong Huang, Xiaopeng Zheng Jan 2020

Passivation Of Defects In Perovskite Materials For Improved Solar Cell Efficiency And Stability, Jinsong Huang, Xiaopeng Zheng

Mechanical & Materials Engineering Faculty Publications

Semiconductor devices, and methods of forming the same, include a cathode layer, an anode layer, and an active layer disposed between the cathode layer and the anode layer, wherein the active layer includes a perovskite layer. A passivation layer is disposed directly on a surface of the active layer between the cathode layer and the active layer, the passivation layer including a layer of material that passivates both cationic and anionic defects in the surface of the active layer.


Determination And Validation Of Mechanical Properties Of Materials And Substructures, Karl Bates Jan 2020

Determination And Validation Of Mechanical Properties Of Materials And Substructures, Karl Bates

Williams Honors College, Honors Research Projects

The nature of this project is confidential and cannot be disclosed in detail. Generally, this project involves the manufacturing of an original design, which is subjected to a variety of tests – including tensile, compressive, bending, fatigue, and environmental testing, as well as qualitative destructive tests – to determine the mechanical properties of the component. This testing data compares with values predicted using Finite-Element Analysis. The validation of predicted FEM values is crucial to the success of this component, as it is designed for lifecritical applications. If test results indicate poor structural performance, considerable redesign will be necessary.


Jominy Hardenability Tester With In-Situ Heating, Luke Allen Jan 2020

Jominy Hardenability Tester With In-Situ Heating, Luke Allen

Williams Honors College, Honors Research Projects

This project centers on building a Jominy Hardenability tester with In-Situ heating for the manufacturing lab at the University of Akron. A new process and setup will be designed using engineering concepts in order to make the testing more efficient and safer for the teaching and testing of metal hardness. The current Jominy testing setup has efficiency issues within the transfer of specimen from induction heater to testing rig. Our design will simplify the design by creating a test rig that removes the traveling aspect of the specimen which will limit the amount of premature cooling done and will be ...


Synthesis And Characterization Of Material Systems For 3d Printed Smart Structures, Hilda Fontes Jan 2020

Synthesis And Characterization Of Material Systems For 3d Printed Smart Structures, Hilda Fontes

Open Access Theses & Dissertations

The silica hollow spheres have demonstrated excellent results in multiple applications such as light-weight composites, and optical applications as a glass coating. This material also exhibits excellent thermal, shock impact, and hydrophilic properties extremely useful for industrial applications. However, a controllable size of the particle is desired to further increase the number of applications of the silica hollow spheres.

This Thesis aims a method to fabricate silica hollow spheres in a single step with a controlled diameter size. A study was developed to demonstrate the particle size change when adjusting the molecular weight of the medium by using different alcohol ...


Electrospun Thymosin Beta-4 Loaded Plga/Pla Nanofiber/ Microfiber Hybrid Yarns For Tendon Tissue Engineering Application, Shaohua Wu, Rong Zhou, Fang Zhou, Philipp N. Streubel, Shaojuan Chen, Bin Duan Jan 2020

Electrospun Thymosin Beta-4 Loaded Plga/Pla Nanofiber/ Microfiber Hybrid Yarns For Tendon Tissue Engineering Application, Shaohua Wu, Rong Zhou, Fang Zhou, Philipp N. Streubel, Shaojuan Chen, Bin Duan

Mechanical & Materials Engineering Faculty Publications

Microfiber yarns (MY) have been widely employed to construct tendon tissue grafts. However, suboptimal ultrastructure and inappropriate environments for cell interactions limit their clinical application. Herein, we designed a modified electrospinning device to coat poly(lactic-co-glycolic acid) PLGA nanofibers onto polylactic acid (PLA) MY to generate PLGA/PLA hybrid yarns (HY), which had a well-aligned nanofibrous structure, resembling the ultrastructure of native tendon tissues and showed enhanced failure load compared to PLA MY. PLGA/PLA HY significantly improved the growth, proliferation, and tendon-specific gene expressions of human adipose derived mesenchymal stem cells (HADMSC) compared to PLA MY. Moreover, thymosin beta-4 ...


3d Printing Of Multilayered Scaffolds For Rotator Cuff Tendon Regeneration, Xiping Jiang, Shaohua Wu, Mitchell Kuss, Yunfan Kong, Wen Shi, Philipp N. Streubel, Tieshi Li, Bin Duan Jan 2020

3d Printing Of Multilayered Scaffolds For Rotator Cuff Tendon Regeneration, Xiping Jiang, Shaohua Wu, Mitchell Kuss, Yunfan Kong, Wen Shi, Philipp N. Streubel, Tieshi Li, Bin Duan

Mechanical & Materials Engineering Faculty Publications

Repairing massive rotator cuff tendon defects remains a challenge due to the high retear rate after surgical intervention. 3D printing has emerged as a promising technique that enables the fabrication of engineered tissues with heterogeneous structures and mechanical properties, as well as controllable microenvironments for tendon regeneration. In this study, we developed a new strategy for rotator cuff tendon repair by combining a 3D printed scaffold of polylactic-co-glycolic acid (PLGA) with cell-laden collagen-fibrin hydrogels. We designed and fabricated two types of scaffolds: one featuring a separate layer-by-layer structure and another with a tri-layered structure as a whole. Uniaxial tensile tests ...


Imparities Of Shear Avalanches Dynamic Evolution In A Metallic Glass, Yin Du, Qing Zhou, Qian Jia, Yidi Shi, Haifeng Wang, Jian Wang Jan 2020

Imparities Of Shear Avalanches Dynamic Evolution In A Metallic Glass, Yin Du, Qing Zhou, Qian Jia, Yidi Shi, Haifeng Wang, Jian Wang

Mechanical & Materials Engineering Faculty Publications

The imparities of shear avalanches dynamic evolution under nanoindentation originating from the soft regions and the stiff matrix were explored in a metallic glass by statistical and dynamic analysis. Upon the continuous indentation process, the dynamic state of the stiff matrix exhibits a transition from a chaotic behavior to a self-organized critical (SOC) behavior, whereas the soft regions are domi-nated by the SOC behavior throughout the indentation process. The mechanism was clarified by the evolution of the cut-off size of shear avalanches. These findings might advance our fundamental understanding of inhomogeneous deformation on microscale.

IMPACT STATEMENT The shear avalanches dynamic ...


Investigation Of Longitudinal Cracking In Widened Concrete Pavements, Shuo Yang, Yang Zhang, Orhan Kaya, Halil Ceylan, Sunghwan Kim Jan 2020

Investigation Of Longitudinal Cracking In Widened Concrete Pavements, Shuo Yang, Yang Zhang, Orhan Kaya, Halil Ceylan, Sunghwan Kim

Civil, Construction and Environmental Engineering Publications

Widened slabs, widely employed in many US states in concrete pavements, have suffered from unexpected longitudinal cracks. These cracks suddenly appeared within 0.60 m to 1.20 m from widened slab edges and could be detrimental to the long-term pavement performance. The primary objective of this study was to identify possible causes for such longitudinal cracking observed on widened concrete pavements. Both field investigation and Finite Element Analysis were performed. Degrees of curling and warping were measured using a Terrestrial Laser Scanner. Concrete cores were also extracted to achieve a better understanding of how the cracking had developed. Field ...


Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii Jan 2020

Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii

Theses and Dissertations--Biomedical Engineering

It has been observed through numerous academic and governmental agency studies that pediatric all-terrain vehicle ridership carries significant risk of injury and death. While no doubt valuable to safety, the post-hoc approach employed in these studies does little to explain the why and how behind the risk factors. Furthermore, there has been no prolonged, widespread, organized, and concerted effort to reconstruct and catalog the details and causes of the large (20,000+) number of ATV-related injuries that occur each year as has been done for road-based motor vehicle accidents. This dissertation takes the opposite approach from a meta-analysis and instead ...


Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown Jan 2020

Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown

Theses and Dissertations--Mechanical Engineering

Finish machining is an essential manufacturing process that is used to enhance the mechanical characteristics of critical components. The deformation that occurs at the tool and workpiece interface in finish machining significantly affects a host of component properties, commonly referred to as “surface integrity” properties. Surface roughness is a machining deformation-affected characteristic that is of high relevance in contemporary manufacturing. However, over recent decades it has been made clear that the material properties of the deformed surface layers are relevant to component performance as well. Predicting the overall surface quality of a machined component is of great relevance to the ...


Fabrication, Development, And Characterization Of Hipco Swcnt - Alginate Hydrogel Composites For Cellular Product Applications, Fabian Armando Alvarez-Primo Jan 2020

Fabrication, Development, And Characterization Of Hipco Swcnt - Alginate Hydrogel Composites For Cellular Product Applications, Fabian Armando Alvarez-Primo

Open Access Theses & Dissertations

In this study, we designed, synthesized, and characterized ultrahigh purity single-walled carbon nanotube (SWCNT)-alginate hydrogel composites. Among the parameters of importance in the formation of an alginate-based hydrogel composite with single-walled carbon nanotubes, are their varying degrees of purity, their particulate agglomeration and their dose-dependent correlation to cell viability, all of which have an impact on the resultant compositeâ??s efficiency and effectiveness towards biomedical applications. To promote their homogenous dispersion by preventing agglomeration of the SWCNT, at first, we used three different surfactants-sodium dodecyl sulfate (SDS-anionic), cetyltrimethylammonium bromide (CTAB-cationic), and Pluronic F108 (nonionic). After experimentation and corroboration through ...


Supercritical Processed Decellularized Extracellualr Matrix As Regeneration Therapeutics Applying 3d Printing, Seungwon Chung Jan 2020

Supercritical Processed Decellularized Extracellualr Matrix As Regeneration Therapeutics Applying 3d Printing, Seungwon Chung

Open Access Theses & Dissertations

Extracellular matrix has been broadly applied and show great promise in medical applications and tissue engineering. Product of extracellular matrix (ECM) should be treated with decellularization and purification process. Supercritical carbon dioxide treatment is of particular interest for purifying ECM because of its medically available and rapid speed of process. However, it is not fully researched in treatment of biomaterials for tissue engineering. Therefore, we investigated optimal conditions of supercritical carbon dioxide processing in different extracting parameters from porcine adipose tissue. The 3-day, dual treatment including enzymatic decellularization and supercritical fluid extraction of pork adipose tissue were performed. Two types ...


Investigation Of Iron Doped Gallium Oxide (Ga-Fe-O) System: Structure Property Relationship And Performance Evaluation For Optical And Catalytic Applications, Swadipta Roy Jan 2020

Investigation Of Iron Doped Gallium Oxide (Ga-Fe-O) System: Structure Property Relationship And Performance Evaluation For Optical And Catalytic Applications, Swadipta Roy

Open Access Theses & Dissertations

From September 2012 to May 2015, a phenocam monitored the seaward edge of a protected mangrove forest. Calculated GCC revealed seasonal greening patterns of a mangrove species, Rhizophoa apiculata, and an overall increase in the GCC, suggesting mangrove expansion. In comparing temperature and precipitation effects, it was found that this particular mangrove species had a greening optima at temperatures between 28°C and 28.5°C, and greening and canopy development response lag time of 10 weeks in response to precipitation. Tree saplings were monitored and showed to grow by 50%, mostly during a three month period during the rainy ...


Evaluation Of Cyclo Olefin Polymer As Sabot Material For High-Density Projectiles, Estebanne Tarango Jan 2020

Evaluation Of Cyclo Olefin Polymer As Sabot Material For High-Density Projectiles, Estebanne Tarango

Open Access Theses & Dissertations

Assuring the integrity of spacecraft and its occupants are a priority in the field of space exploration. Micrometeoroids and orbital debris are one of the primary threats that affect spacecraft materials due to the high kinetic energies involved with hypervelocity impacts. Improvement of projectile launching capabilities prompts the investigation of adequate materials for the manufacturing of sabots able to carry high-density projectiles without catastrophic failure. Polycarbonate (PC) has been the chosen material by the Hypervelocity Team at White Sands Test Facility for sabots on the 0.50 caliber launcher; however, there is a material constraint when the projectile becomes significantly ...


Fabrication, Characterization And Applications Of Highly Conductive Wet-Spun Pedot:Pss Fibers, Ruben Sarabia Riquelme Jan 2020

Fabrication, Characterization And Applications Of Highly Conductive Wet-Spun Pedot:Pss Fibers, Ruben Sarabia Riquelme

Theses and Dissertations--Chemical and Materials Engineering

Smart electronic textiles cross conventional uses to include functionalities such as light emission, health monitoring, climate control, sensing, storage and conversion of energy, etc. New fibers and yarns that are electrically conductive and mechanically robust are needed as fundamental building blocks for these next generation textiles.

Conjugated polymers are promising candidates in the field of electronic textiles because they are made of earth-abundant, inexpensive elements, have good mechanical properties and flexibility, and can be processed using low-cost large-scale solution processing methods. Currently, the main method to fabricate electrically conductive fibers or yarns from conjugated polymers is the deposition of the ...


Buckling Load Study On Pop Nut (Rivet) Using Finite Element Analysis, Saurabh Shankar Shegokar Jan 2020

Buckling Load Study On Pop Nut (Rivet) Using Finite Element Analysis, Saurabh Shankar Shegokar

Dissertations, Master's Theses and Master's Reports

This study highlights the material behavior in riveting operation that includes buckling load analysis using ABAQUS. Finite Element Analysis is used to find the buckling load vs. Displacement results and validated with the results obtained in physical testing of rivet (POP Nut). A mesh sensitivity study is performed using ABAQUS to understand the optimum mesh size for this analysis. An axisymmetric model with contact properties is created and simulated to reduce the simulation time using ABAQUS. The results obtained through Finite Element Analysis show a good resemblance with the testing results. Design changes were suggested to achieve better results that ...


Generation Of Warm Dense Plasma On Solar Panel Infrastructure In Exo-Atmospheric Conditions, Harrison C. Wenzel Jan 2020

Generation Of Warm Dense Plasma On Solar Panel Infrastructure In Exo-Atmospheric Conditions, Harrison C. Wenzel

Theses and Dissertations

The use of a weaponized thermo-nuclear device in exo-atmospheric conditions would be of great impact on the material integrity of orbiting satellite infrastructure. Particular damage would occur to the multi-layered, solar cell components of such satellites. The rapid absorption of X-ray radiation originating from a nuclear blast into these layers occurs over a picosecond time scale and leads to the generation of Warm Dense Plasma (WDP). While incredibly difficult and costly to replicate in a laboratory setting, a collection of computational techniques and software libraries may be utilized to simulate the intricate atomic and subatomic physics characteristics of such an ...


Modern Engineering, William Jarvis Mcalpine Jan 2020

Modern Engineering, William Jarvis Mcalpine

Engineering Sciences

This book to night is the last of the course. That course, we rejoice to say, has been sustained by the unanimous approval of the press, and by the presence here of very large and intelligent audiences, sometimes in spite of very discouraging weather.


North Shore Railway, Silas Seymour Jan 2020

North Shore Railway, Silas Seymour

Engineering Sciences

relation to matters in difference between Silas Seymour, General Consulting Engineer, and Thomas McGreevy, Contractor for the North Shore Railway.


Adjustable Short Throw Shifter (Asts), Joshua Franklin Jan 2020

Adjustable Short Throw Shifter (Asts), Joshua Franklin

All Undergraduate Projects

Every manual transmission vehicle has a shift lever for changing gears. The problem is that the shifting linkage is setup up for one kind of driving. Numerous vehicles have multiple settings for the suspension to adapt to varying driving scenarios (i.e. cruising, sport, track). No vehicle currently has an adjustable short throw shifter (ASTS) that can accommodate drag racing, drifting, sports car racing, rallying, off-roading, or casual driving. The design of the ASTS solves this problem by moving the central axis of rotation of the shifter up two inches, permitting the adjustment of the shifting throw between 20 and ...


R/C Mini Baja Car: Drive Train And Steering, Carlton R. Mcdonald Jan 2020

R/C Mini Baja Car: Drive Train And Steering, Carlton R. Mcdonald

All Undergraduate Projects

The purpose of the Baja R/C Car is to compete in the ASME eFX competition in a series of events to prove the functionality of the vehicle. This series of events includes the Slalom, Drag, and Baja race, The Slalom is a test in the steering capability of the vehicle, the Drag is a test in the acceleration of the vehicle in a straight line, and the Baja puts all factors together in a race to test every component of the vehicle. This project is about building an R/C car that not only functions, but also has maximum ...


Mechanical Footstep Power Generator, Mohammed Saleh Aljohani, Faisal Alonazi Jan 2020

Mechanical Footstep Power Generator, Mohammed Saleh Aljohani, Faisal Alonazi

All Undergraduate Projects

Mechanical Footstep Power generator

By Author: Mohammed Aljohani

Abstract

Modern technology is focusing on newer and better sources of energy. Among the important areas are power generation methods since electricity has become part of our lives. Various researchers have conducted surveys to find out the feasibility of converting renewable kinetic energy into electricity. Some of the works done in the past emphasized the selection of suitable materials and power generation systems designs that appear complicated and expensive. To ensure there is cost efficiency and energy efficiency better power generation systems need to be embraced.

The footstep power generator is a ...


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in ...


Customized Boron And Magnesium-Based Reactive Materials Prepared By High Energy Mechanical Milling, Xinhang Liu Dec 2019

Customized Boron And Magnesium-Based Reactive Materials Prepared By High Energy Mechanical Milling, Xinhang Liu

Dissertations

New reactive materials need to be developed having biocidal combustion products. When ignited, such material can add chemical biocidal effects to the common effects of high temperature and pressure. Biocidal combustion products are capable of deactivating harmful spores or bacteria, which can be released by targets containing biological weapons of mass destruction. Research showed that halogens, especially iodine, are effective as biocidal components of reactive material formulations. Recently, magnesium combustion product MgO is also found to have a biocidal effect. Thus, advanced formulations containing both magnesium and iodine are of interest; such formulations are prepared and investigated here.

Reactive materials ...


Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner Dec 2019

Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner

Mechanical & Materials Engineering Faculty Publications

Ultrasonic scattering in polycrystalline media is directly tied to microstructural features. As a result, modeling efforts of scattering from microstructure have been abundant. The inclusion of beam modeling for the ultrasonic transducers greatly simplified the ability to perform quantitative, fully calibrated experiments. In this article, a theoretical scattering model is generalized to allow for arbitrary source and receiver configurations, while accounting for beam behavior through the total propagation path. This extension elucidates the importance and potential of out-of-plane scattering modes in the context of microstructure characterization. The scattering coefficient is explicitly written for the case of statistical isotropy and ellipsoidal ...


Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed Dec 2019

Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed

UNLV Theses, Dissertations, Professional Papers, and Capstones

The intrinsic link between long-range order, coordination geometry, and the electronic properties of a system must be understood in order to tailor function-specific materials. Although material properties are typically tailored using chemical dopants, such methods can cause irreversible changes to the structure, limiting the range of functionality. The application of high pressure may provide an alternative “clean” method to tune the electronic properties of semiconducting materials by tailoring their defect density and structure.

We have explored a number of optoelectronic relevant materials with promising characteristics, specifically Sn-(O,N) compounds which have been predicted to undergo pressure-mediated opening of their ...