Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Viscoelasticity

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Engineering Science and Materials

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li Jun 2019

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis ...


Grain Size Effects On Viscoelastic Relaxation Of Sub-Micron Thickness Fcc Metallic Films, Jeffrey Smyth Aug 2018

Grain Size Effects On Viscoelastic Relaxation Of Sub-Micron Thickness Fcc Metallic Films, Jeffrey Smyth

Theses and Dissertations

Sub-micron thickness metallic thin films are known to exhibit mechanical size effects, where the thin film mechanical behavior can differ significantly from that of a bulk version of the same material. One such mechanical behavior, and the focus of this work, is the unique thin film viscoelastic deformation response to sub-yield, low-strain stimuli in near-ambient temperature environments. In engineering components using bulk materials, strains within the elastic regime are generally considered instantaneous. It is only at higher operating temperatures that temporal deformation processes, such as creep, are considered in bulk component design. However, in Micro-Electro-Mechanical Systems (MEMS), specifically Radio Frequency ...


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian Jun 2018

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is ...


Experimental Validation For The Theory Of Blisters’ Instabilities, Hongtian Zhu Jan 2018

Experimental Validation For The Theory Of Blisters’ Instabilities, Hongtian Zhu

Mechanical Engineering Graduate Theses & Dissertations

Blister formation is a universal problem that can be witnessed within a wide range of contents. It is first documented as a side effect of syringomyelia and other diseases. Later on, the forming of blisters are also observed during the cell apoptosis, which leads to the hypothesis that it could have some intricate relationships with the death of living organisms. Other than biological problems, blister forming is also a common phenomenon in thin film technologies. Therefore, the research in the forming of blisters is essential and critical in both engineering and science fields.

In this thesis, we study the problem ...


Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou Sep 2015

Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou

Electronic Thesis and Dissertation Repository

Dielectric elastomer transducers with large deformation, high energy output, light weight and low cost have been drawing great interest from both the research and industry communities, and shown potential for versatile applications in biomimetics, dynamics, robotics and energy harvesting. However, in addition to multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, the performance of dielectric elastomer transducers are also strongly influenced by the hyperelastic and viscoelastic properties of the material. Also, the interplay among these material properties and the failure modes is rather difficult to predict. Therefore, in order to provide guidelines for the optimal design ...


Non-Specific Interactions Between Cationic Nanoparticle-Polymer Composites And Biomolecules, Matthew Alexander Caporizzo Jan 2014

Non-Specific Interactions Between Cationic Nanoparticle-Polymer Composites And Biomolecules, Matthew Alexander Caporizzo

Publicly Accessible Penn Dissertations

This dissertation describes the consequences of non-specific binding between cationic nanoparticles (NPs) and biological materials ranging from persistence length reduction of single actin filaments, to modified kinetics of myosin V motility, and culminating with correlating THP-1 cell metabolic stress to viscoelastic changes. The bulk of the thesis (chapters 3-5), utilizes optically transparent polymer-NP composites with controllable hierarchical roughness to tune the interaction strength between actin filaments and the surface and impact myosin V kinetics. To generate hierarchical roughness, precise control over the thermodynamics and dynamics of NH2-functionalized NPs in polystyrene-ran-acrylic acid (SAA) is demonstrated in chapter 3. In ...


Studies On The Wrinkling Of Thin Polymer Films Floating On Liquid, Kamil B. Toga Aug 2013

Studies On The Wrinkling Of Thin Polymer Films Floating On Liquid, Kamil B. Toga

Doctoral Dissertations

This dissertation aims to broaden our understanding on wrinkling instabilities occurring on floating polymeric sheets, and tries to establish innovative methods that exploit these patterns in studies on material behavior and interfacial phenomena. We will address three major topics in this thesis including, i) characterization of the conditions required to buckle an annular disc, ii) characterization of wrinkles occurring around a droplet/bubble placed on a membrane that is kept taut at the liquid-air interface, and iii) using wrinkling patterns as a probe to understand the interfacial behavior and dynamics of ultrathin films.

The first project in this thesis is ...


Experimental Characterization Of Stress Relaxation In Glass, Hemanth Kadali Dec 2009

Experimental Characterization Of Stress Relaxation In Glass, Hemanth Kadali

All Theses

Glass viscoelasticity has gained importance in recent years as glass lens molding appeared as a valuable alternative to the traditional grinding and polishing process for manufacturing glass lenses. In the precision lens molding process, knowledge of viscoelastic properties of glass in the transition region, which affect the stress relaxation behavior, is required to precisely predict the final size and shape of molded lenses. The purpose of this study is to establish a step-by-step procedure for characterizing the viscoelastic behavior of glass in the glass transition region using a finite term Prony series of a Generalized Maxwell model. This study focuses ...


Multiscale Modeling Of Glass Fiber Reinforced Viscoelastic Polymers Subjected To Impact Loads, Victor Ferreira Teixeira Jun 2009

Multiscale Modeling Of Glass Fiber Reinforced Viscoelastic Polymers Subjected To Impact Loads, Victor Ferreira Teixeira

Engineering Mechanics Dissertations & Theses

New applications for polymer composite materials are occurring at a rapid pace today. These include structural components in the energy, transportation, and biomedical fields. Many if not all of these new applications will require that part performance is insured with some degree of sustainable damage. With the growth in the use of composite structures comes the necessity of improved methodologies that can predict more accurately the life and serviceability conditions of composite parts. Damage mechanics in two-phase composite materials is a very complex problem that has challenged researchers for many years. However, most of the available models perform only a ...


Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza Apr 2009

Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza

Engineering Mechanics Dissertations & Theses

Multiscale computational techniques play a major role in solving problems related to viscoelastic composite materials due to the complexities inherent to these materials. In the present work, a numerical procedure for multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks is proposed in which the (global scale) homogenized viscoelastic incremental constitutive equations have the same form as the local scale viscoelastic incremental constitutive equations, but the homogenized tangent constitutive tensor and the homogenized incremental history dependent stress tensor depend on the amount of damage accumulated at the local scale. Furthermore, the developed technique allows the computation of the ...


Characterization Of A Viscoelastic Response From Thin Metal Films Deposited On Silicon For Microsystem Applications, Steven L. Meredith Jan 2009

Characterization Of A Viscoelastic Response From Thin Metal Films Deposited On Silicon For Microsystem Applications, Steven L. Meredith

Master's Theses and Project Reports

Understanding the mechanisms that control the mechanical behavior of microscale actuators is necessary to design an actuator that responds to an applied actuation force with the desired behavior. Micro actuators which employ a diaphragm supported by torsional hinges which deform during actuation are used in many applications where device stability and reliability are critical. The material response to the stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. A fully recoverable non-linear viscoelastic response has been observed in electrostatically driven micro actuators employing torsional hinges of silicon covered with thin metal films ...


Modeling The Effect Of Plasticizer On The Viscoelastic Response Of Crosslinked Polymers Using The Tube-Junction Model, P. P. Simon, Harry J. Ploehn Jan 2000

Modeling The Effect Of Plasticizer On The Viscoelastic Response Of Crosslinked Polymers Using The Tube-Junction Model, P. P. Simon, Harry J. Ploehn

Faculty Publications

Plasticizers modify the mechanical properties of polymericmaterials. The effects of plasticizers on glass transition temperatures can be most clearly observed in isochronal temperature sweep profiles of viscoelastic dynamic moduli. However, no simple mathematical models of plasticization are available to those who wish to design and employ plasticized materials in specific applications. We extend a phenomenological, molecular-level model (known as the tube–junction model) for crosslinked polymers to describe the effect of plasticizers on dynamic moduli. We show that the increase in free volume fraction due to the presence of the plasticizer can account for the shift in the glass transition ...


Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn Jan 1997

Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn

Faculty Publications

We present a new molecular-level picture of chain dynamics for describing the viscoelasticity of crosslinked polymers. The associated mathematical model consists of a time-dependent momentum balance on a representative polymer segment in the crosslinked network, plus phenomenological expressions for forces acting on the segments. These include a cohesive force that accounts for intermolecular attraction, an entropic force describing the thermodynamics governing chain conformations, and a frictional force that captures the temperature dependence of relative chain motion. We treat the case of oscillatory uniaxial deformation. Solution of the model equations in the frequency domain yields the dynamic moduli as functions of ...