Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering Science and Materials

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime Nov 2017

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime

FIU Electronic Theses and Dissertations

In this study, the effect of ultrasonic treatment (UST) parameters such as amplitude, sonication time, and melt temperature on microstructure and microhardness of Al 6061 alloy is evaluated. The effect of UST on the dispersion of tungsten disulfide (WS2) and carbon nanotubes (CNT) as reinforcement particles in Al 6061 during casting is also studied. The cast Al 6061 with UST demonstrated 32% grain size reduction and 8% increase in the microhardness for optimum processing conditions. The cavitation process induced by UST is responsible for the refinement in microstructure and increase of hardness by enhancing the degassing and nucleation process ...


Multiple Scattering Theory For Polycrystalline Materials With Strong Grain Anisotropy: Theoretical Fundamentals And Applications, Huijing He Oct 2017

Multiple Scattering Theory For Polycrystalline Materials With Strong Grain Anisotropy: Theoretical Fundamentals And Applications, Huijing He

Mechanical & Materials Engineering Faculty Publications

This work is a natural extension of the author’s previous work: “Multiple scattering theory for heterogeneous elastic continua with strong property fluctuation: theoretical fundamentals and applications” (arXiv:1706.09137 [physics.geo-ph]), which established the foundation for developing multiple scattering model for heterogeneous elastic continua with either weak or strong fluctuations in mass density and elastic stiffness. Polycrystalline material is another type of heterogeneous materials that widely exists in nature and extensively used in industry. In this work, the corresponding multiple scattering theory for polycrystalline materials with randomly oriented anisotropic crystallites is developed. To validate the theory, the theoretical results ...


3d Printing Of 316l Stainless Steel And Its Effect On Microstructure And Mechanical Properties, Rawn Penn Oct 2017

3d Printing Of 316l Stainless Steel And Its Effect On Microstructure And Mechanical Properties, Rawn Penn

Graduate Theses & Non-Theses

Laser powder bed fusion or 3D printing is a potential candidate for net shape forming and manufacturing complex shapes. Understanding of how various parameters affect build quality is necessary. Specimens were made from 316L stainless steel at 0°, 30°, 60°, and 90° angles measured from the build plate. Three tensile and four fatigue specimens at each angle were produced. Fracture morphology investigation was performed to determine the fracture mode of specimens at each build angle. Microstructural analysis was performed on one of each orientation. The average grain size of the samples was marginally influenced by the build angle orientation. Tensile ...


Tem Study Of The Martensitic Phases In The Ductile Dycu And Ycu Intermetallic Compounds, G. H. Cao, C.-G. Oertel, R. Schaarschuch, W. Skrotzki, Alan M. Russell Jun 2017

Tem Study Of The Martensitic Phases In The Ductile Dycu And Ycu Intermetallic Compounds, G. H. Cao, C.-G. Oertel, R. Schaarschuch, W. Skrotzki, Alan M. Russell

Materials Science and Engineering Publications

DyCu and YCu are representatives of the family of CsCI-type B2 rare earth intermetallic compounds that exhibit high room temperature ductility. Structure, orientation relationship, and morphology of the martensites in the equiatomic compounds DyCu and YCu are examined using transmission electron microscopy (TEM). TEM studies show that the martensite structures in DyCu and YCu alloys are virtually identical. The martensite is of orthorhombic CrB-type B33 structure with lattice parameters a = 0.38 nm, b = 1.22 nm, and c = 0.40 nm. (02 (1) over bar) twins were observed in the B33 DyCu and YCu martensites. The orientation relationship of ...


Micro/Nanostructures Formation By Femtosecond Laser Surface Processing On Amorphous And Polycrystalline Ni60nb40, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Meiyu Wang, Ryan Bell, Michael J. Lucis, Troy P. Anderson, Dennis R. Alexander, George Gogos, Jeffrey E. Shield Jan 2017

Micro/Nanostructures Formation By Femtosecond Laser Surface Processing On Amorphous And Polycrystalline Ni60nb40, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Meiyu Wang, Ryan Bell, Michael J. Lucis, Troy P. Anderson, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Mechanical & Materials Engineering Faculty Publications

Femtosecond laser surface processing is a technology that can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophilicity/superhydrophobicity. In this study, two unique classes of surface structures, below surface growth (BSG) and above surface growth (ASG) mounds, were formed by femtosecond laser surface processing on amorphous and polycrystalline Ni60Nb40 with two different grain sizes. Cross sectional imaging of these mounds revealed thermal evidence of the unique formation processes for each class of surface structure. BSG mounds formed on all three substrates using the same laser parameters had similar ...


Bottom-Up Approach To Fabricate Nanostructured Thin Films From Colloidal Nanocrystal Precursors, Santosh Shaw Jan 2017

Bottom-Up Approach To Fabricate Nanostructured Thin Films From Colloidal Nanocrystal Precursors, Santosh Shaw

Graduate Theses and Dissertations

Control over microstructures at the nanoscale (<100nm) still seems challenging due to, among other things, the stochastic nature of nucleation in the bulk phase. The densification of assemblies of ligand-capped nanocrystals (colloidal nanocrystal assemblies, CNAs) could bypass this challenge that limits our control over the nanostructure and, therefore, the properties of materials. However, the removal of the ligands and the cracking that follows it are the two critical hurdles that have been stymieing this approach.

We show that low-pressure plasma processing can effectively remove ligands from CNAs (down to 0.6 at.% of carbon which can be accounted for adventitious carbon) without harming the properties of the inorganic cores of the nanoparticles and the structure of CNAs. The cracking of CNAs is correlated with the structure of the CNAs, which can be controlled and easily predicted by Hansen solubility parameters of solvent in which the nanoparticles are dispersed. While a fully solvated ligand shell leads to the formation of close-packed ordered CNAs – which cracked after self-assembly or ligand removal ...