Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Graphene

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Engineering Science and Materials

Synthesis Of Graphene And Graphene-Based Composite Membrane, Yuanjun Fan Nov 2017

Synthesis Of Graphene And Graphene-Based Composite Membrane, Yuanjun Fan

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Vibration membrane equipped for earphone requires high performance in both mechanical properties and electronic properties. With extraordinary properties on both, graphene and graphene-based composite materials appear as a promising candidate for this application. Chemical vapor deposition (CVD) is believed to be the most convenient way to synthesize a large area (on scale of square centimeters) as well as a homogeneous thickness for the membrane. The thesis focuses on applying control variable experiment method to analyze different effects on mechanical property of the two CVD setting parameters: cooling rate, and hydrocarbon precursor. For isolating the specimens efficiently, a modified electrochemical method ...


Suspended Graphene-Based Gas Sensor With 1-Mw Energy Consumption, Jong-Hyun Kim, Qin Zhou, Jiyoung Chang Jan 2017

Suspended Graphene-Based Gas Sensor With 1-Mw Energy Consumption, Jong-Hyun Kim, Qin Zhou, Jiyoung Chang

Mechanical & Materials Engineering Faculty Publications

This paper presents NH3 sensing with ultra-low energy consumption for fast recovery and a graphene sheet based on a suspended microheater. Sensitivity and repeatability are important characteristics of functional gas sensors embedded in mobile devices. Moreover, low energy consumption is an essential requirement in flexible and stretchable mobile electronics due to their small dimension and fluctuating resistivity during mechanical behavior. In this paper, we introduce a graphene-based ultra-low power gas detection device with integration of a suspended silicon heater. Dramatic power reduction is enabled by a duty cycle while not sacrificing sensitivity. The new oscillation method of heating improves ...


Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi Jan 2017

Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi

Doctoral Dissertations

Fuel cells have been demonstrated to be promising power generation devices to address the current global energy and environmental challenges. One of the many barriers to commercialization is the cost of precious catalysts needed to achieve sufficient power output. Platinum-based materials play an important role as electrocatalysts in energy conversion technologies. In order to improve catalytic efficiency and facilitate rational design and development of new catalysts, structure–function relationships that underpin catalytic activity must be understood at a fundamental level.

First, we present a systematic analysis of CO adsorption on Pt nanoclusters in the 0.2-1.5 nm size range ...


Control And Manipulation Of Nanoparticles For Fabrication Of Metal Matrix Composites, Mina Bastwros Jan 2017

Control And Manipulation Of Nanoparticles For Fabrication Of Metal Matrix Composites, Mina Bastwros

Graduate Theses and Dissertations

The mechanical properties of composite materials are mainly determined by their microstructures that depend on comprising phases and their properties, the shape and size of those phases, and their distribution. By controlling and optimizing the various aspects of the microstructure, composites with improved mechanical properties can be created. One of the challenges, however, is the lack of scalable fabrication method capable of making complex structures. The conventional fabrication techniques for MMCs have been limited to fabricating simple structures with homogeneous dispersion of constituents. In this work, various fabrication approaches that can control the microstructure in metal matrix reinforced with nanoparticles ...


Dft Study Of Adsorption Of Trimetallic Endohedral Fullerenes On Graphene, Nakul Nitin Karle Jan 2017

Dft Study Of Adsorption Of Trimetallic Endohedral Fullerenes On Graphene, Nakul Nitin Karle

Open Access Theses & Dissertations

A density functional theory (DFT) study on the geometric and electronic structure of C60 and Sc3N@C80 along with their adsorption on pristine single layer graphene (SLG) is presented. C60 is found to adsorb in two nearly degenerate configurations: (i) with a pentagon facing the SLG, which is the most stable one, and (ii) with a hexagon facing the SLG in a face-to-face perfect alignment, rarely common in Ï?â??Ï? interactions, 0.06 eV higher in energy. The calculated binding energy of 0.76 eV, which includes dispersion effects, is in good agreement with previous theoretical and experimental reports ...


Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf May 2016

Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf

FIU Electronic Theses and Dissertations

Ultra high temperature ceramics (UHTC) are candidate materials for high temperature applications such as leading edges for hypersonic flight vehicles, thermal protection systems for spacecraft, and rocket nozzle throat inserts due to their extremely high melting points. Tantalum and Niobium Carbide (TaC and NbC), with melting points of 3950°C and 3600°C, respectively, have high resistivity to chemical attack, making them ideal candidates for the harsh environments UHTCs are to be used in. The major setbacks to the implementation of UHTC materials for these applications are the difficulty in consolidating to full density as well as their low fracture ...


Liquid-Phase Exfoliation Of Two-Dimensional Graphite For Ink-Jet Printing, Monica Michel Jan 2016

Liquid-Phase Exfoliation Of Two-Dimensional Graphite For Ink-Jet Printing, Monica Michel

Open Access Theses & Dissertations

Over the last decade, the study of two-dimensional (2D) materials has seen an incredible growth due to their unique thermal, mechanical and electronic properties. Solution phase manufacturing offers a way in which they can be produced at large scale by creating dispersions from the exfoliated material. Once created, different options for assembling devices exist. One technique for large scale manufacturing of materials in this form is ink-jet printing, which is a form of additive manufacturing that has proven to be attractive for the printed electronics industry. One challenge that ink-jet printing still faces is the shortage of inks with appropriate ...


Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster Jan 2015

Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster

Publicly Accessible Penn Dissertations

Over the last five years, solid state nanopore technology advanced to rival biological pores as a platform for next generation DNA sequencing. Fabrication improvements led to a reduction in nanopore diameter and membrane thickness, offering high precision sensing. Custom electronics were developed concomitant with low capacitance membranes for low-noise, high-bandwidth measurements. These advances improved our ability to detect small differences between translocating molecules and to measure short molecules translocating at high speeds.

This work focuses specifically on the challenge of maximizing the signal magnitude generated by the solid state nanopore. One way that this can be achieved is by thinning ...


Some Analytic And Finite Element Solutions Of The Graphene Euler Beam, Dongming Wei Jul 2014

Some Analytic And Finite Element Solutions Of The Graphene Euler Beam, Dongming Wei

Dongming Wei

No abstract provided.


Electron Correlation Effects In Strained Dual-Layer Graphene Systems, Peter Karl Harnish Jan 2014

Electron Correlation Effects In Strained Dual-Layer Graphene Systems, Peter Karl Harnish

Graduate College Dissertations and Theses

In low dimensional systems, electron correlation effects can often be enhanced. This can be vital since these effects not only play an important role in the study of many-electron physics, but are also useful in designing new materials for various applications. Since its isolation from graphite in 2004, graphene, a two dimensional sheet of carbon atoms, has drawn considerable interest due to its remarkable properties. In the past few years, research has moved on from single to bi-, dual- and multi-layer graphene systems, each displaying their own multitudes of intriguing properties. In particular, multi-layer systems that are electronically decoupled, but ...


Modeling The Exfoliation Rate Of Graphene Nanoplatelet Production And Application For Hydrogen Storage, Cory Knick Jan 2012

Modeling The Exfoliation Rate Of Graphene Nanoplatelet Production And Application For Hydrogen Storage, Cory Knick

Browse all Theses and Dissertations

Graphene is a unique and revolutionary new nanomaterial. A method for it's production had a U.S. patent application in 2002 (patent issued in 2006), it was produced via mechanical exfolia-tion in 2004, and subsequently the Nobel Prize in Physics was awarded in 2010 for it. These events have sparked a surge of graphene-related research. In order for graphene to be widely studied and incorporated into emerging technologies, a versatile method for large scale produc-tion of high-quality graphene is required. Current methods are either slow or expensive which limits the scale-up of graphene production. Very recently, the liquid phase ...


Graphene Based Anode Materials For Lithium-Ion Batteries, Sree Lakshmi Cheekati Jan 2011

Graphene Based Anode Materials For Lithium-Ion Batteries, Sree Lakshmi Cheekati

Browse all Theses and Dissertations

Improvements of the anode performances in Li-ions batteries are in demand to satisfy applications in transportation. In comparison with graphitic carbons, transition metal oxides as well as graphene can store over twice amount of lithium per gram. Recently, graphene-based anodes for Li-ion batteries are under extensive development. In this research, lithium storage characteristics in graphene oxide (GO), GO/Manganese acetate (GO/MnAc), GO/manganese oxide (GO/MnOx) composites and Nano Graphene Platelets (NGP) were studied. The prepared GO delivered reversible capacities of 706mAh/g with an average columbic efficiency of 87%. Reversible capacities of 533 mAh/g were observed for ...


Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman Jan 2009

Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman

Birck and NCN Publications

Carbon nanotubes (CNTs) have gained increased interest in dynamic atomic force microscopy (dAFM) as sharp, flexible, conducting, nonreactive tips for high-resolution imaging, oxidation lithography, and electrostatic force microscopy. By means of theory and experiments we lay out a map of several distinct tapping mode AFM oscillation states for CNT tipped AFM cantilevers: namely, noncontact attractive regime oscillation, intermittent contact with CNT slipping or pinning, or permanent contact with the CNT in point or line contact with the surface while the cantilever oscillates with large amplitude. Each state represents fundamentally different origins of CNT-surface interactions, CNT tip-substrate dissipation, and phase contrast ...