Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Method Of Embedded Imperfections For The Direct Simulation Of Deformation Instabilities In Film-Substrate Structures, Siavash Nikravesh Kazeroni Apr 2022

Method Of Embedded Imperfections For The Direct Simulation Of Deformation Instabilities In Film-Substrate Structures, Siavash Nikravesh Kazeroni

Mechanical Engineering ETDs

In this dissertation, a novel finite-element methodology called “embedded imperfections” is proposed and employed for computationally simulating various types of deformation instabilities observed in film-substrate structures subjected to mechanical loading. The approach involves the incorporation of elements having distinctive material properties within the film-substrate interface. One can interpret this practice as a deliberate distribution of material defects within the numerical model. It has been shown that embedded imperfections not only can trigger the onset of instability, but also can lead to “direct” simulation of deformation instability problems in that primary and subsequent instability modes can all be captured in a …


Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati Jan 2016

Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati

Dissertations, Master's Theses and Master's Reports

Phononic crystals (PhnCs) control, direct and manipulate sound waves to achieve wave guiding and attenuation. This dissertation presents methodology for analyzing nanotube materials based phononic crystals to achieve control over sound, vibration and stress mitigation. Much of the analytical work presented is in identifying frequency band gaps in which sound or vibration cannot propagate through these PhnCs. Wave attenuation and mitigation analysis is demonstrated using finite element simulation. Engineering principles from current research areas of solid mechanics, solid-state physics, elasto-dynamics, mechanical vibrations and acoustics are employed for the methodology. A considerable effort is put to show that these PhnCs can …