Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering Science and Materials

Dynamic Self-Assembling Dna Nanosystems: Design And Engineering, Divita Mathur Jan 2016

Dynamic Self-Assembling Dna Nanosystems: Design And Engineering, Divita Mathur

Graduate Theses and Dissertations

Over the last thirty years, DNA has proven to be a great candidate for engineering nanoscale architectures. These DNA nanostructures have been applied in areas such as single-molecular analyses, nanopatterning, diagnostics and therapeutics. One of the most commonly-used techniques to engineer DNA-based two- and three-dimensional functional nanostructures is DNA origami, wherein a long single-stranded DNA (called scaffold) is folded into a predetermined shape with the help of a set of shorter oligonucleotides (called staples). This thesis discusses a brief overview of DNA nanotechnology (design, assembly and applications) and three primary projects undertaken in the area of dynamic self-assembling DNA nanosystems ...


Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster Jan 2015

Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster

Publicly Accessible Penn Dissertations

Over the last five years, solid state nanopore technology advanced to rival biological pores as a platform for next generation DNA sequencing. Fabrication improvements led to a reduction in nanopore diameter and membrane thickness, offering high precision sensing. Custom electronics were developed concomitant with low capacitance membranes for low-noise, high-bandwidth measurements. These advances improved our ability to detect small differences between translocating molecules and to measure short molecules translocating at high speeds.

This work focuses specifically on the challenge of maximizing the signal magnitude generated by the solid state nanopore. One way that this can be achieved is by thinning ...


Investigating The Use Of In Situ Liquid Cell Scanning Transmission Electron Microscopy To Explore Dna-Mediated Gold Nanoparticle Growth, Amanda Nguy Jan 2015

Investigating The Use Of In Situ Liquid Cell Scanning Transmission Electron Microscopy To Explore Dna-Mediated Gold Nanoparticle Growth, Amanda Nguy

Graduate Theses and Dissertations

Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved ...


Purification And Structural Characterization Of Caged Dna Oligonucleotides, Brendan Michael Mcadams Jan 2005

Purification And Structural Characterization Of Caged Dna Oligonucleotides, Brendan Michael Mcadams

LSU Master's Theses

“Cage” molecules reversibly block the bioactivity of a target substrate molecule by a photolyzable covalent bond formed at a functional site of the target molecule. The attachment of cage molecules to DNA oligodeoxynucleotides (ODNs) to transiently block bioactivity, and site-specific restoration of bioactivity using targeted light exposure, would enable a new method of control for use in gene therapy, molecular/DNA computing, molecular biology, and drug delivery. The reaction of the cage molecule 1-(4,5-dimethoxy-2-nitrophenyl)diazoethane (DMNPE) with DNA ODNs in an batch reaction yields a mixture of products with varying degrees of caging. Purification and verification of the ...