Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Development Of A Two-Fluid Drag Law For Clustered Particles Using Direct Numerical Simulation And Validation Through Experiments, Ahmadreza Abbasi Baharanchi Nov 2015

Development Of A Two-Fluid Drag Law For Clustered Particles Using Direct Numerical Simulation And Validation Through Experiments, Ahmadreza Abbasi Baharanchi

FIU Electronic Theses and Dissertations

This dissertation focused on development and utilization of numerical and experimental approaches to improve the CFD modeling of fluidization flow of cohesive micron size particles. The specific objectives of this research were: (1) Developing a cluster prediction mechanism applicable to Two-Fluid Modeling (TFM) of gas-solid systems (2) Developing more accurate drag models for Two-Fluid Modeling (TFM) of gas-solid fluidization flow with the presence of cohesive interparticle forces (3) using the developed model to explore the improvement of accuracy of TFM in simulation of fluidization flow of cohesive powders (4) Understanding the causes and influential factor which led to improvements and ...


Simulation Of Infiltrating Rate Driven By Surface Tension-Viscosity Of Liquid Elements From The Titanium Group Into A Packed Bed, Arturo Medina Jan 2015

Simulation Of Infiltrating Rate Driven By Surface Tension-Viscosity Of Liquid Elements From The Titanium Group Into A Packed Bed, Arturo Medina

Open Access Theses & Dissertations

The simulation of infusion of molten reactive metals (e.g., yttrium) into a porous, carbide packed bed to create carbide and boride composites was studied at ultrahigh temperatures (>1700°C). The infusion was investigated through a computational fluid dynamic (CFD) system of capillary pores and compared to a predicted analytical calculation formulated by Selmak and Rhines. Simulations of two-phase flow penetration of yttrium into a packed bed of B4C were investigated and compared with titanium, zirconium, hafnium, and samarium liquids. The non-reactive, liquid metal infusion was primarily driven by the surface tension and viscosity. The liquid metal depth and rate ...