Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley Jun 2015

Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley

Materials Engineering

Atom level computer simulations of the arabinan and cellulose interface were performed to better understand the mechanisms that give arabinan-cellulose composites (ArCCs) their strength with the goal to improve man-made ArCCs. The molecular dynamics (MD) software LAMMPS was used in conjunction with the ReaxFF/c force field to model the bond between cellulose and arabinan. A cellulose nanocrystal with dimensions 51 x 32 x 8 Å was minimized with various weight percent of water, 0%, 3%, 5%, 8%, 10%, and 12%. After the system was equilibrated for at least 100,000 femtoseconds, an arabinan molecule composed of 8 arabinose rings ...


Improving Product Design By Predicting Flexural Strength Of A Honeycomb Core Sandwich Panel Composite Using Ply Tensile Strength, Justin Lui, Javal Patel Jun 2015

Improving Product Design By Predicting Flexural Strength Of A Honeycomb Core Sandwich Panel Composite Using Ply Tensile Strength, Justin Lui, Javal Patel

Materials Engineering

The use of composite sandwich panels has increased in the aerospace industry. Prediction of a theoretical composite construction's flexural properties is important for efficient composite product designs. Utilizing the four point flexure geometry defined by Zodiac Aerospace, Santa Maria, CA, a mechanical model was derived to predict the flexural behavior of a theoretical honeycomb core sandwich composite using laminate tensile properties. The most common failure mode of Zodiac Aerospace’s four point bend test is a failure in tension of the bottom laminate. Given this information, ASTM D3039 (Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials ...


Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair Jun 2015

Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair

Materials Engineering

Raytheon Company currently uses a Forest Products Laboratory (FPL) paste etchant for preparing aluminum surfaces for adhesive bonding, and FPL is a source of hazardous hexavalent chromium. The goal of this study was to evaluate a less-toxic P2 paste etchant as a possible replacement. Coupons of 2024-T3, 6061-T6, and 7075-T6 grades of aluminum alloy were solvent-degreased, abrasively cleaned, and etched at room temperature using P2 paste following a strict protocol adopted from Raytheon. Coupons were then left exposed to air for assigned time intervals (or “outlife” times) of 0, 1, 4, 8, 16, and 63 or 72 hours. The aluminum ...