Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Engineering Science and Materials

An Estimate Of The Second-Order In-Plane Acceleration Sensitivity Of A Y-Cut Quartz Thickness-Shear Resonator, Huijing He, Jiashi Yang, John A. Kosinski Aug 2015

An Estimate Of The Second-Order In-Plane Acceleration Sensitivity Of A Y-Cut Quartz Thickness-Shear Resonator, Huijing He, Jiashi Yang, John A. Kosinski

Mechanical & Materials Engineering Faculty Publications

We perform a theoretical analysis of the second-order in-plane acceleration sensitivity of a Y-cut quartz thick-ness-shear mode resonator. The second-order nonlinear theory of elasticity for anisotropic crystals is used to determine the biasing fields in the resonator under in-plane acceleration. The acceleration-induced frequency shift is determined from a per-turbation analysis based on the plate equations for small-amplitude vibrations superposed on a finite bias. We show that, whereas the first-order acceleration-induced frequency shift is zero for a structurally symmetric resonator under in-plane ac-celeration, the second-order frequency shift is nonzero and is quadratic in the acceleration. As the fourth-order nonlinear elastic constants ...


Biodegradable Medical Device Having An Adjustable Degradation Rate And Methods Of Making The Same, Yuebin Guo, Michael Sealy, Meisam Salahshoor Pirsoltan Jul 2015

Biodegradable Medical Device Having An Adjustable Degradation Rate And Methods Of Making The Same, Yuebin Guo, Michael Sealy, Meisam Salahshoor Pirsoltan

Mechanical & Materials Engineering Faculty Publications

Disclosed herein are biodegradable medical devices comprising biodegradable material (e.g., magnesium-calcium alloys) having an adjustable rate of degradation that can be used in various applications, including, but not limited to, drug delivery applications, cardiovascular applications, and orthopedic applications to make biodegradable and biocompatible devices. Also disclosed herein are methods of making biodegradable medical devices comprising biodegradable materials by using, for instance, hybrid dry cutting/hydrostatic burnishing.


Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth For Efficient Hybrid Perovskite Solar Cells, Cheng Bi, Qi Wang, Yongbo Yuan, Zhengguo Xiao, Jinsong Huang Jun 2015

Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth For Efficient Hybrid Perovskite Solar Cells, Cheng Bi, Qi Wang, Yongbo Yuan, Zhengguo Xiao, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to ...


Methods And Systems For Handling Or Delivering Materials For Natural Orifice Surgery, Carl Nelson, Jeff Midday, Dimitry Oleynikov, Alan Goyzueta Mar 2015

Methods And Systems For Handling Or Delivering Materials For Natural Orifice Surgery, Carl Nelson, Jeff Midday, Dimitry Oleynikov, Alan Goyzueta

Mechanical & Materials Engineering Faculty Publications

The embodiments disclosed herein relate to various medical systems, including systems that can be used in conjunction with medical devices used in endoscopic surgery. Certain embodiments include various material handling devices that can transport materials between the inside and the outside of an endoscopic surgery patient.


Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza Jan 2015

Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Railroad transportation is very important for economic growth and effective maintenance is one critical factor for its economic sustainability. The high repetitive forces from a moving railcar induce cyclic stresses that lead to rail bending and potential deterioration due to fatigue crack initiation and propagation. Previous research for prediction of fatigue life has been done under the assumptions of a uniform track bed and a homogeneous rail. However the spatial variation of the track stiffness is expected to increase the maximum stresses in the rail and, therefore, accelerate the fatigue process. The research described in this dissertation is focused on ...


Inducing Persistent Flow Disturbances Accelerates Atherogenesis And Promotes Thin Cap Fibroatheroma Development In D374y-Pcsk9 Hypercholesterolemic Minipigs, Ryan M. Pedrigi, Christian Bo Poulsen, Vikram V. Mehta, Niels Ramsing Holm, Nilesh Pareek, Anouk L. Post, Ismail Dogu Kilic, Winston A.S. Banya, Gianni Dall'ara, Alessio Mattesini, Martin M. Bjorklund, Niels P. Andersen, Anna K. Grondal, Enrico Petretto, Nicolas Foin, Justin E. Davies, Carlo Di Mario, Jacob Fog Bentzon, Hans Erik Botker, Erling Falk, Rob Krams, Ranil De Silva Jan 2015

Inducing Persistent Flow Disturbances Accelerates Atherogenesis And Promotes Thin Cap Fibroatheroma Development In D374y-Pcsk9 Hypercholesterolemic Minipigs, Ryan M. Pedrigi, Christian Bo Poulsen, Vikram V. Mehta, Niels Ramsing Holm, Nilesh Pareek, Anouk L. Post, Ismail Dogu Kilic, Winston A.S. Banya, Gianni Dall'ara, Alessio Mattesini, Martin M. Bjorklund, Niels P. Andersen, Anna K. Grondal, Enrico Petretto, Nicolas Foin, Justin E. Davies, Carlo Di Mario, Jacob Fog Bentzon, Hans Erik Botker, Erling Falk, Rob Krams, Ranil De Silva

Mechanical & Materials Engineering Faculty Publications

Background—Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma (TCFA).

Methods and Results—D374Y-PCSK9 hypercholesterolemic minipigs (N=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately post-stent, 19, and 34 weeks and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially-collected histological sections and co-registered to the ...


Quantification Of Plaque Stiffness By Brillouin Microscopy In Experimental Thin Cap Fibroatheroma, Giuseppe Antonacci, Ryan M. Pedrigi, Avinash Kondiboyina, Vikram V. Mehta, Ranil De Silva, Carl Paterson, Rob Krams, Peter Torok Jan 2015

Quantification Of Plaque Stiffness By Brillouin Microscopy In Experimental Thin Cap Fibroatheroma, Giuseppe Antonacci, Ryan M. Pedrigi, Avinash Kondiboyina, Vikram V. Mehta, Ranil De Silva, Carl Paterson, Rob Krams, Peter Torok

Mechanical & Materials Engineering Faculty Publications

Plaques vulnerable to rupture are characterized by a thin and stiff fibrous cap overlaying a soft lipid-rich necrotic core. The ability to measure local plaque stiffness directly to quantify plaque stress and predict rupture potential would be very attractive, but no current technology does so. This study seeks to validate the use of Brillouin microscopy to measure the Brillouin frequency shift, which is related to stiffness, within vulnerable plaques. The left carotid artery of an ApoE-/- mouse was instrumented with a cuff that induced vulnerable plaque development in nine weeks. Adjacent histological sections from the instrumented and control arteries were ...


In Situ Longitudinal Pre-Stretch In The Human Femoropopliteal Artery, Alexey Kamenskiy, Andreas Seas, Grant Bowen, Paul Deegan, Anastasia Desyatova, Nick Bohlim, William Poulson, Jason N. Mactaggart Jan 2015

In Situ Longitudinal Pre-Stretch In The Human Femoropopliteal Artery, Alexey Kamenskiy, Andreas Seas, Grant Bowen, Paul Deegan, Anastasia Desyatova, Nick Bohlim, William Poulson, Jason N. Mactaggart

Mechanical & Materials Engineering Faculty Publications

In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n=148 fresh human FPAs (14–80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff-Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then ...


Improving The Sensitivity Of A Near-Infrared Nanocomposite Photodetector By Enhancing Trap Induced Hole Injection, Liang Shen, Yanjun Fang, Qingfeng Dong, Zhengguo Xiao, Jinsong Huang Jan 2015

Improving The Sensitivity Of A Near-Infrared Nanocomposite Photodetector By Enhancing Trap Induced Hole Injection, Liang Shen, Yanjun Fang, Qingfeng Dong, Zhengguo Xiao, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

We report the enhancement of the photoconductive gain of nanocomposite near-infrared photodetectors by a zinc oxide nanoparticles (ZnO NPs) rich surface at the nanocomposite/cathode interface. An argon plasma etching process was used to remove polymer at the surface of nanocomposite films, which resulted in a ZnO NPs rich surface. The other way is to spin-coat a thin layer of ZnO NPs onto the nanocomposite layer. The ZnO NPs rich surface, which acts as electron traps to induce secondary hole injection under reverse bias, increased hole injection, and thus the external quantum efficiency by 2–3 times. The darkcurrent declined ...


Electron-Hole Diffusion Lengths >175 Μm In Solution-Grown Ch3Nh3Pbi3 Single Crystals, Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, Jinsong Huang Jan 2015

Electron-Hole Diffusion Lengths >175 Μm In Solution-Grown Ch3Nh3Pbi3 Single Crystals, Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

Long, balanced electron and hole diffusion lengths greater than 100 nanometers in polycrystalline CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We report that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 μm under 1 sun illumination and exceed 3 mm under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3 mm-thick single crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, lifetime and dramatically smaller trap densities in ...


Chloride Incorporation Process In Ch3Nh3Pbi3-XClX Perovskites Via Nanoscale Bandgap Maps, Jungseok Chae, Qingfeng Dong, Jinsong Huang, Andrea Centrone Jan 2015

Chloride Incorporation Process In Ch3Nh3Pbi3-XClX Perovskites Via Nanoscale Bandgap Maps, Jungseok Chae, Qingfeng Dong, Jinsong Huang, Andrea Centrone

Mechanical & Materials Engineering Faculty Publications

CH3NH3PbI3-xClx perovskites enable fabrication of highly efficient solar cells. Chloride ions benefit the morphology, carrier diffusion length and stability of perovskite films; however, whether those benefits stem from the presence of Cl in the precursor solution or from their incorporation in annealed films is debated. In this work, the photothermal induced resonance (PTIR), an in situ technique with nanoscale resolution, is leveraged to measure the bandgap of CH3NH3PbI3-xClx films obtained by a multicycle coating process that produces high efficiency (≈16 %) solar cells. Because chloride ions modify ...


Efficiency Enhancement In Polymer Solar Cells With A Polar Small Molecule Both At Interface And In The Bulk Heterojunction Layer, Zhengguo Xiao, Qingfeng Dong, Qi Wang, Wenjing Tian, Hui Huang, Jinsong Huang Jan 2015

Efficiency Enhancement In Polymer Solar Cells With A Polar Small Molecule Both At Interface And In The Bulk Heterojunction Layer, Zhengguo Xiao, Qingfeng Dong, Qi Wang, Wenjing Tian, Hui Huang, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

The polar molecules, including ferroelectric materials with large dipole moments, have been applied as interfacial layers to increase the efficiency of organic solar cells by increasing the bounded charge separation, tuning the energy levels, etc. Here, we report a small polar molecule 2-cyano-3- (4-(diphenylamino) phenyl)acrylic acid (TPACA) that can be either blended in the active layer or at the polymer/electrode interface to increase the efficiency of organic solar cell devices after poling. It is found that the built-in potential of the device is increased by 0.2 V after poling under negative bias. Blending TPACA into the ...


Extracting Continuum-Like Deformation And Stress From Molecular Dynamics Simulations, Lili Zhang, John Jasa, George Gazonas, Antoine Jerusalem, Mehrdad Negahban Jan 2015

Extracting Continuum-Like Deformation And Stress From Molecular Dynamics Simulations, Lili Zhang, John Jasa, George Gazonas, Antoine Jerusalem, Mehrdad Negahban

Mechanical & Materials Engineering Faculty Publications

We present methods that use results from molecular dynamics (MD) simulations to construct continuum parameters, such as deformation gradient and Cauchy stress, from all or any part of an MD system. These parameters are based on the idea of minimizing the difference between MD measures for deformation and traction and their continuum counterparts. The procedures should be applicable to non-equilibrium and inhomogeneous systems, and to any part of a system, such as a polymer chain. The resulting procedures provide methods to obtain first and higher order deformation gradients associated with any subset of the MD system, and associated expressions for ...


Evaluation Of Peritoneal Microbubble Oxygenation Therapy In A Rabbit Model Of Hypoxemia, Nathan D. Legband, Jameel A. Feshitan, Mark A. Borden, Benjamin S. Terry Jan 2015

Evaluation Of Peritoneal Microbubble Oxygenation Therapy In A Rabbit Model Of Hypoxemia, Nathan D. Legband, Jameel A. Feshitan, Mark A. Borden, Benjamin S. Terry

Mechanical & Materials Engineering Faculty Publications

Alternative extrapulmonary oxygenation technologies are needed to treat patients suffering from severe hypoxemia refractory to mechanical ventilation. We previously demonstrated that peritoneal microbubble oxygenation (PMO), in which phospholipid-coated oxygen microbubbles (OMBs) are delivered into the peritoneal cavity, can successfully oxygenate rats suffering from a right pneumothorax. This study addressed the need to scale up the procedure to a larger animal with a splanchnic cardiac output similar to humans. Our results show that PMO therapy can double the survival time of rabbits experiencing complete tracheal occlusion from6.6 ± 0.6 min for the saline controls to 12.2 ± 3.0 min ...


Electronic Structure Evolution Of Fullerene On Ch3Nh3Pbi3, Chenggong Wang, Congcong Wang, Xiaoliang Liu, John Kauppi, Yuchuan Shao, Zhengguo Xiao, Cheng Bi, Jinsong Huang, Yongli Gao Jan 2015

Electronic Structure Evolution Of Fullerene On Ch3Nh3Pbi3, Chenggong Wang, Congcong Wang, Xiaoliang Liu, John Kauppi, Yuchuan Shao, Zhengguo Xiao, Cheng Bi, Jinsong Huang, Yongli Gao

Mechanical & Materials Engineering Faculty Publications

The thickness dependence of fullerene on CH3NH3PbI3 perovskite film surface has been investigated by using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the HOMO level in fullerene shifts to lower binding energy. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskite film to fullerene molecules. Further deposition of fullerene ...


Relevance Of Blood Vessel Networks In Blast-Induced Traumatic Brain Injury, Yi Hua, Shengmao Lin, Linxia Gu Jan 2015

Relevance Of Blood Vessel Networks In Blast-Induced Traumatic Brain Injury, Yi Hua, Shengmao Lin, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Cerebral vasculature is a complex network that circulates blood through the brain. However, the role of this networking effect in brain dynamics has seldom been inspected. This work is to study the effects of blood vessel networks on dynamic responses of the brain under blast loading. Voronoi tessellations were implemented to represent the network of blood vessels in the brain. The brain dynamics in terms of maximumprincipal strain (MPS), shear strain (SS), and intracranial pressure (ICP) weremonitored and compared. Results show that blood vessel networks significantly affected brain responses.The increased MPS and SS were observed within the brain embedded ...


Towards Tuning The Mechanical Properties Of Three-Dimensional Collagen Scaffolds Using A Coupled Fiber-Matrix Model, Shengmao Lin, Lauren A. Hapach, Cynthia Reinhart-King, Linxia Gu Jan 2015

Towards Tuning The Mechanical Properties Of Three-Dimensional Collagen Scaffolds Using A Coupled Fiber-Matrix Model, Shengmao Lin, Lauren A. Hapach, Cynthia Reinhart-King, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network ...


Development And Preliminary Evaluation Of A Spray Deposition Sensing System For Improving Pesticide Application, Melissa A. Kesterson, Joe D. Luck, Michael P. Sama Jan 2015

Development And Preliminary Evaluation Of A Spray Deposition Sensing System For Improving Pesticide Application, Melissa A. Kesterson, Joe D. Luck, Michael P. Sama

Mechanical & Materials Engineering Faculty Publications

An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface ...


Multiscale Modeling Of Skeletal Muscle Active Contraction In Relation To Mechanochemical Coupling Of Molecular Motors, Jiangcheng Chen, Xiaodong Zhang, Shengmao Lin, He Wang, Linxia Gu Jan 2015

Multiscale Modeling Of Skeletal Muscle Active Contraction In Relation To Mechanochemical Coupling Of Molecular Motors, Jiangcheng Chen, Xiaodong Zhang, Shengmao Lin, He Wang, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

In this work, a mathematical model was developed to relate the mechanochemical characterizations of molecular motors with the macroscopic manifestation of muscle contraction. Non-equilibrium statistical mechanics were used to study the collective behavior of myosin molecular motors in terms of the complex conformation change and multiple chemical states in one working cycle. The stochastic evolution of molecular motor probability density distribution during the contraction of sarcomere was characterized by the Fokker-Planck Equation. Quick muscle contraction was demonstrated by the collective dynamic behavior of myosin motors, the muscle contraction force, and the muscle contraction velocity-force relation. Our results are validated against ...


Mammalian Synthetic Biology: Emerging Medical Applications, Zoltan Kis, Hugo Sant'ann Pereira, Takayuki Homma, Ryan M. Pedrigi, Rob Krams Jan 2015

Mammalian Synthetic Biology: Emerging Medical Applications, Zoltan Kis, Hugo Sant'ann Pereira, Takayuki Homma, Ryan M. Pedrigi, Rob Krams

Mechanical & Materials Engineering Faculty Publications

In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology.We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and posttranslational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks ...


Self‑Propelled Droplets On Heated Surfaces With Angled Self‑Assembled Micro/Nanostructures, Cory Kruse, Isra Somanas, Troy Anderson, Chris Wilson, Craig Zuhlke, Dennis Alexander, George Gogos, Sidy Ndao Jan 2015

Self‑Propelled Droplets On Heated Surfaces With Angled Self‑Assembled Micro/Nanostructures, Cory Kruse, Isra Somanas, Troy Anderson, Chris Wilson, Craig Zuhlke, Dennis Alexander, George Gogos, Sidy Ndao

Mechanical & Materials Engineering Faculty Publications

Directional and ratchet-like functionalized surfaces can induce liquid transport without the use of an external force. In this paper, we investigate the motion of liquid droplets near the Leidenfrost temperature on functionalized self-assembled asymmetric microstructured surfaces. The surfaces, which have angled microstructures, display unidirectional properties. The surfaces are fabricated on stainless steel through the use of a femtosecond laser-assisted process. Through this process, mound-like microstructures are formed through a combination of material ablation, fluid flow, and material redeposition. In order to achieve the asymmetry of the microstructures, the femtosecond laser is directed at an angle with respect to the sample ...


Enhanced Pool-Boiling Heat Transfer And Critical Heat Flux On Femtosecond Laser Processed Stainless Steel Surfaces, Cory M. Kruse, Troy Anderson, Chris Wilson, Craig Zuhlke, Dennis Alexander, George Gogos, Sidy Ndao Jan 2015

Enhanced Pool-Boiling Heat Transfer And Critical Heat Flux On Femtosecond Laser Processed Stainless Steel Surfaces, Cory M. Kruse, Troy Anderson, Chris Wilson, Craig Zuhlke, Dennis Alexander, George Gogos, Sidy Ndao

Mechanical & Materials Engineering Faculty Publications

In this paper, we present an experimental investigation of pool boiling heat transfer on multiscale (micro/nano) functionalized metallic surfaces. Heat transfer enhancement in metallic surfaces is very important for large scale high heat flux applications like in the nuclear power industry. The multiscale structures were fabricated via a femtosecond laser surface process (FLSP) technique, which forms self-organized mound-like microstructures covered by layers of nanoparticles. Using a pool boiling experimental setup with deionized water as the working fluid, both the heat transfer coefficients and critical heat flux were investigated. A polished reference sample was found to have a critical heat ...


Role Of Interphase In The Mechanical Behavior Of Silica/Epoxy Resin Nanocomposites, Yi Hua, Linxia Gu, Sundaralingam Premaraj, Xiaodong Zhang Jan 2015

Role Of Interphase In The Mechanical Behavior Of Silica/Epoxy Resin Nanocomposites, Yi Hua, Linxia Gu, Sundaralingam Premaraj, Xiaodong Zhang

Mechanical & Materials Engineering Faculty Publications

A nanoscale representative volume element has been developed to investigate the effect of interphase geometry and property on the mechanical behavior of silica/epoxy resin nanocomposites. The role of interphase–matrix bonding was also examined. Results suggested that interphase modulus and interfacial bonding conditions had significant influence on the effective stiffness of nanocomposites, while its sensitivities with respect to both the thickness and the gradient property of the interphase was minimal. The stiffer interphase demonstrated a higher load-sharing capacity, which also increased the stress distribution uniformity within the resin nanocomposites. Under the condition of imperfect interfacial bonding, the effective stiffness ...


Color And Texture Morphing With Colloids On Multilayered Surfaces, Ziguang Chen, Shumin Li, Andrew Arkebauer, George Gogos, Li Tan Jan 2015

Color And Texture Morphing With Colloids On Multilayered Surfaces, Ziguang Chen, Shumin Li, Andrew Arkebauer, George Gogos, Li Tan

Mechanical & Materials Engineering Faculty Publications

Dynamic morphing of marine species to match with environment changes in color and texture is an advanced means for surviving, self-defense, and reproduction. Here we use colloids that are placed inside a multilayered structure to demonstrate color and texture morphing. The multilayer is composed of a thermal insulating base layer, a light absorbing mid layer, and a liquid top layer. When external light of moderate intensity (∼0.2 W cm−2) strikes the structure, colloids inside the liquid layer will be assembled to locations with an optimal absorption. When this system is exposed to continuous laser pulses, more than 18 ...