Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Engineering Science and Materials

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu Dec 2015

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu

Doctoral Dissertations

A number of computational methodologies have been developed to investigate the deformation and damage mechanism of various structural materials at different length scale and under extreme loading conditions, and also to provide insights in the development of high-performance materials.

In microscopic material behavior and failure modes, polycrystalline metals of interest include heterogeneous deformation field due to crystalline anisotropy, inter/intra grain or phase and grain boundary interactions. Crystal plasticity model is utilized to simulate microstructure based polycrystalline materials, and micro-deformation information, such as lattice strain evolution, can be captured based on crystal plasticity finite element modeling (CPFEM) in ABAQUS. The comparison …


Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock Dec 2015

Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock

Master's Theses

Composite materials offer a high strength-to-weight ratio and directional load bearing capabilities. Compression molding of composite materials yields a superior surface finish and good dimensional stability between component lots with faster processing compared to traditional manufacturing methods. This experimental compression molding capability was developed for the ME composites lab using unidirectional carbon fiber prepreg composites. A direct comparison was drawn between autoclave and compression molding methods to validate compression molding as an alternative manufacturing method in that lab. A method of manufacturing chopped fiber from existing unidirectional prepreg materials was developed and evaluated using destructive testing methods. The results from …


Effect Of Processing History And Material Properties On The Growth Of Wrinkle Amplitude, Yu-Cheng Chen Nov 2015

Effect Of Processing History And Material Properties On The Growth Of Wrinkle Amplitude, Yu-Cheng Chen

Doctoral Dissertations

Wrinkling has been employed by many organisms to form unique topography, such as fingerprints, gut villi, and surface of flower petal cells. The wavy wrinkle structure provides friction enhancement, surface area increase, optical, and wetting properties improvement. Inspired by Nature, scientists have created wrinkles synthetically and proposed numerous uses for them. However, wrinkling surfaces encounters limitations on achieving massive area and high amplitude-to-wavelength ratio (aspect ratio). The three phase contact line wrinkling technique creates well-defined wrinkles in a continuous fashion, and has great potential to scale-up for massive production. In addition to the velocity dependent adhesion force, we find the …


Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou Sep 2015

Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou

Electronic Thesis and Dissertation Repository

Dielectric elastomer transducers with large deformation, high energy output, light weight and low cost have been drawing great interest from both the research and industry communities, and shown potential for versatile applications in biomimetics, dynamics, robotics and energy harvesting. However, in addition to multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, the performance of dielectric elastomer transducers are also strongly influenced by the hyperelastic and viscoelastic properties of the material. Also, the interplay among these material properties and the failure modes is rather difficult to predict. Therefore, in order to provide guidelines for the optimal design …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows Jul 2015

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows

Graduate Theses and Dissertations

The deleterious effects of atomic and molecular hydrogen on the mechanical properties of metals have long been observed. Although several theories exist describing the mechanisms by which hydrogen negatively influences the failure of materials, a consensus has yet to be reached regarding the exact mechanism or combination of mechanisms. Two mechanisms have gained support in explaining hydrogen’s degradative role in non-hydride forming metals: hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Yet, the interplay between these mechanisms and microstructure in metallic materials has not been explained. Accordingly, for this thesis, the three main objectives are: (i) to develop a numerical methodology to …


Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley Jun 2015

Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley

Materials Engineering

Atom level computer simulations of the arabinan and cellulose interface were performed to better understand the mechanisms that give arabinan-cellulose composites (ArCCs) their strength with the goal to improve man-made ArCCs. The molecular dynamics (MD) software LAMMPS was used in conjunction with the ReaxFF/c force field to model the bond between cellulose and arabinan. A cellulose nanocrystal with dimensions 51 x 32 x 8 Å was minimized with various weight percent of water, 0%, 3%, 5%, 8%, 10%, and 12%. After the system was equilibrated for at least 100,000 femtoseconds, an arabinan molecule composed of 8 arabinose rings was added …


Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair Jun 2015

Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair

Materials Engineering

Raytheon Company currently uses a Forest Products Laboratory (FPL) paste etchant for preparing aluminum surfaces for adhesive bonding, and FPL is a source of hazardous hexavalent chromium. The goal of this study was to evaluate a less-toxic P2 paste etchant as a possible replacement. Coupons of 2024-T3, 6061-T6, and 7075-T6 grades of aluminum alloy were solvent-degreased, abrasively cleaned, and etched at room temperature using P2 paste following a strict protocol adopted from Raytheon. Coupons were then left exposed to air for assigned time intervals (or “outlife” times) of 0, 1, 4, 8, 16, and 63 or 72 hours. The aluminum …


Analysis Of A Carbon Fiber Reinforced Polymer Impact Attenuator For A Formula Sae Vehicle Using Finite Element Analysis, John T. Rappolt Jun 2015

Analysis Of A Carbon Fiber Reinforced Polymer Impact Attenuator For A Formula Sae Vehicle Using Finite Element Analysis, John T. Rappolt

Master's Theses

The Hashin failure criteria and damage evolution model for laminated fiber reinforced polymers are explored. A series of tensile coupon finite element analyses are run to characterize the variables in the physical model as well as modeling techniques for using an explicit dynamic solver for a quasi-static problem. An attempt to validate the model on an axial tube crush is presented. It was found that fiber buckling was not occurring at the impactor-tube interface. Results and speculation as to why the failure initiation is incorrect are discussed. Lessons learned from the tube crush are applied successfully to the quasi-static Formula …


Development Of An Efficient Data Processing Procedure For The Prediction Of Cleavage Fracture In Reactor Pressure Vessel Steels Using The J-A2 Method, Phoebe E. Fogelman May 2015

Development Of An Efficient Data Processing Procedure For The Prediction Of Cleavage Fracture In Reactor Pressure Vessel Steels Using The J-A2 Method, Phoebe E. Fogelman

Chancellor’s Honors Program Projects

No abstract provided.


Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek May 2015

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek

Doctoral Dissertations

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the …


Implications Of Heterogeneity In The Shock Wave Propagation Of Dynamically Shocked Materials, Jeffrey W. Lajeunesse Apr 2015

Implications Of Heterogeneity In The Shock Wave Propagation Of Dynamically Shocked Materials, Jeffrey W. Lajeunesse

Master's Theses (2009 -)

The field of shock physics as a whole has only recently begun to pay particular attention to modeling heterogeneous materials under shock loading. These materials are important because of their practicality in terms of creating stronger, more shock resistant materials. To understand why they absorb shock impact energy better than homogeneous materials means that the small-scale processes that occur during the shock loading of these heterogeneous materials needs to be understood. Recent computational experiments, called mesoscale simulations, have shown that explicitly incorporating small-scale heterogeneous features into hydrocode simulations allows the bulk shock response of the heterogeneous material to be observed …


Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines Feb 2015

Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines

Dissertations, Theses, and Capstone Projects

Specifically, the project involves the development of a diversified array of nanostructured gas-sensors comprised of selectively, novel surface-functionalized carbon nanotubes (for analyte selectivity by virtue of functionality). Harnessing carbon nanotubes with various electron withdrawing and donating groups help in determining their affinity toward certain prognostic gaseous markers thus increasing specificity of such created sensors. We have devised synthetic routes that have led to the facile production of covalently polyfunctionalized nanotubes in high yield. Seven carbon nanotube analogues were systematically considered and then chemically synthesized, from pristine single-walled nanotubes (SWNT's), for use as the main component of sensory units that was …


Synthesis And Characterization Of A Novel Polyacetal & Design And Preparation Of Superhydrophobic Photocatalytic Surfaces, Yuanyuan Zhao Feb 2015

Synthesis And Characterization Of A Novel Polyacetal & Design And Preparation Of Superhydrophobic Photocatalytic Surfaces, Yuanyuan Zhao

Dissertations, Theses, and Capstone Projects

Polyacetal polymers are thermoplastic resins that play an important role in industry because of numerous industrial applications including automobile; household appliance; etc. The first part of this thesis (Chapter 2) is about the synthesis of a new acetal copolymer that exhibits superior thermal stability. The second part of this thesis (Chapter 3) is about the preparation and applications of TiO2-based polymer nanocomposite films, where the reactive oxygen species (ROS) are generated on the solid surface. Catalytic nanocomposite films are an active area of research because of their potential uses for environmental remediation and chemical synthesis. Furthermore, to …


Computational Study Of Microstructure-Propertymechanism Relations In Ferroic Composites, Fengde D. Ma Jan 2015

Computational Study Of Microstructure-Propertymechanism Relations In Ferroic Composites, Fengde D. Ma

Dissertations, Master's Theses and Master's Reports - Open

Ferroic materials, as notable members of smart materials, have been widely used in applications that perform sensing, actuation and control. The macroscopic property change of ferroic materials may become remarkably large during ferroic phase transition, leading to the fact that the macroscopic properties can be tuned by carefully applying a suitable external field (electric, magnetic, stress). To obtain an enhancement in physical and/or mechanical properties, different kinds of ferroic composites have been fabricated. The properties of a ferroic composite are determined not only by the properties and relative amounts of the constituent phases, but also by the microstructure of individual …


Exchange Mechanisms In Macroscopic Ordered Organic Magnetic Semiconductors, Naveen Rawat Jan 2015

Exchange Mechanisms In Macroscopic Ordered Organic Magnetic Semiconductors, Naveen Rawat

Graduate College Dissertations and Theses

Small molecule organic semiconductors such as phthalocyanines and their derivatives represent a very interesting alternative to inorganic semiconductor materials for the development of flexible electronic devices such as organic thin field effect transistors, organic Light Emitting Diodes and photo-voltaic cells. Phthalocyanine molecules can easily accommodate a variety of metal atoms as well in the central core of the molecule, resulting in wide range of magnetic properties. Exploration of optical properties of organic crystalline semiconductors thin films is challenging due to sub-micron grain sizes and the presence of numerous structural defects, disorder and grain boundaries. However, this can be overcome by …


Ruo2 Nanorods As An Electrocatalyst For Proton Exchange Membrane Water Electrolysis, Richard Smith Jan 2015

Ruo2 Nanorods As An Electrocatalyst For Proton Exchange Membrane Water Electrolysis, Richard Smith

Graduate College Dissertations and Theses

The desire for pure diatomic hydrogen gas, H2(g), has been on the rise since the concept of the hydrogen economy system was proposed back in 1970. The production of hydrogen has been extensively examined over 40 + years as the need to replace current fuel sources, hydrocarbons, has become more prevalent. Currently there are only two practical and renewable production methods of hydrogen; landfill gas and power to gas. This study focuses on the later method; using various renewable energy sources, such as photovoltaics, to provide off-peak energy to perform water electrolysis. Efficient electrolysis takes place in electrochemical cells which …


Microindentation Of Bi57in26sn17 Lead-Free Alloy, Ruiting Zhao Jan 2015

Microindentation Of Bi57in26sn17 Lead-Free Alloy, Ruiting Zhao

Theses and Dissertations--Chemical and Materials Engineering

There is great need to understand the mechanical properties of lead-free alloys—an alternative of lead-based alloys—to address the environmental problems associated with the use of lead-based materials in microelectronics. In this work, the microstructures of Bi57In26Sn17 lead-free alloy were examined using Optical Microscopy and Energy Dispersive X-ray Spectroscopy analysis. The micro-indentation technique was used to study the mechanical properties of Bi57In26Sn17 lead-free alloy. The experimental results of the hardness and contact modulus were presented and discussed. Local creep during the indentation was observed from the load-displacement curves. The Vickers hardness (HV) increases with the decrease of the indentation depth, suggesting …


The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang Jan 2015

The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang

Graduate College Dissertations and Theses

Σ3{111} coherent twin boundary (CTB) in face-centered-cubic (FCC) metals and alloys have been regarded as an efficient way to simultaneously increase strength and ductility at the nanoscale. Extensive study of dislocation-CTB interaction has been carried out by a combination of computer simulations, experiments and continuum theory. Most of them, however, are based on the perfect CTB assumption. A recent study [Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12(8):697-702.] has revealed the existence of intrinsic kink-like defects in CTBs of nanotwinned copper through nanodiffraction mapping technique, and has confirmed the effect of …


Acoustic Emission Characteristics Of Damage Accumulation In Kevlar® 49 Composites, Eduardo Andrade Jan 2015

Acoustic Emission Characteristics Of Damage Accumulation In Kevlar® 49 Composites, Eduardo Andrade

Open Access Theses & Dissertations

Acoustic emission (AE) data attained during tensile testing of epoxy impregnated Kevlar® 49 (K/Ep) composite strands were reduced and analyzed to monitor progressive damage accumulation during the approach to tensile failure. The K/Ep material tested in this study was chosen due to its similarity to the material-of-construction used in composite overwrapped pressure vessels (COPVs) used on the NASA Space Shuttle Orbiter. Insight into the progressive microstructural degradation of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to differentiate between significant AE attributable to microstructural damage …


Novel Endohedral Derivatives Of Sc3n@C2n (N = 34, 40) And Unique Tether Controlled Bis-Functionalization Of Fullerenes, Maira Raquel Ceron Hernandez Jan 2015

Novel Endohedral Derivatives Of Sc3n@C2n (N = 34, 40) And Unique Tether Controlled Bis-Functionalization Of Fullerenes, Maira Raquel Ceron Hernandez

Open Access Theses & Dissertations

Since the discovery of fullerenes in 1985, their exohedral functionalization has been necessary to increase their solubility and explore their properties and potential applications in materials science and medicinal chemistry. This Thesis provides a short overview of the importance of electronic, size and shape complementarity in determining the structures of specific endohedral fullerene compounds. This is followed by a description of a new method for the separation of scandium nitride endohedral fullerenes Sc3N@C2n (n = 34, 39 and 40), and their monofunctionalization.

We also present the regioselective synThesis of easily isolable bis-derivatives of C60, C70, and M3N@Ih-C80 (M = Sc, …


Simulation Of Infiltrating Rate Driven By Surface Tension-Viscosity Of Liquid Elements From The Titanium Group Into A Packed Bed, Arturo Medina Jan 2015

Simulation Of Infiltrating Rate Driven By Surface Tension-Viscosity Of Liquid Elements From The Titanium Group Into A Packed Bed, Arturo Medina

Open Access Theses & Dissertations

The simulation of infusion of molten reactive metals (e.g., yttrium) into a porous, carbide packed bed to create carbide and boride composites was studied at ultrahigh temperatures (>1700°C). The infusion was investigated through a computational fluid dynamic (CFD) system of capillary pores and compared to a predicted analytical calculation formulated by Selmak and Rhines. Simulations of two-phase flow penetration of yttrium into a packed bed of B4C were investigated and compared with titanium, zirconium, hafnium, and samarium liquids. The non-reactive, liquid metal infusion was primarily driven by the surface tension and viscosity. The liquid metal depth and rate of …


Reaction Of Liquid Aluminium- Samarium Alloys With B4c At Ultra High Temperatures, Sanjay Shantha-Kumar Jan 2015

Reaction Of Liquid Aluminium- Samarium Alloys With B4c At Ultra High Temperatures, Sanjay Shantha-Kumar

Open Access Theses & Dissertations

Reactive studies between a packed bed of B4C and Al-Sm-Me (Me = Ti, Zr, Hf) alloy melts were carried out under a pseudo-isopiestic thermodynamic system. A graphite enclosure isolated the system under a temperature gradient with one end reaching temperatures greater than 1800 K and the opposite end of the graphite enclosure contains liquid Al with temperatures approximating 950 K. The liquid Al establishes an oxygen potential to control oxidation of very reactive elements (i.e., Al, Sm and Ti). The Al-Sm-Me alloy infuses into a packed bed of B4C reacting exothermically to form borides and carbides depending on the thermodynamic …


Defeating Anisotropy In Material Extrusion 3d Printing Via Materials Development, Ángel Ramón Torrado Pérez Jan 2015

Defeating Anisotropy In Material Extrusion 3d Printing Via Materials Development, Ángel Ramón Torrado Pérez

Open Access Theses & Dissertations

Additive Manufacturing technologies has been in continuous development for more than 35 years. Specifically, the later denominated Material Extrusion Additive Manufacturing (MEAM), was first developed by S. Scott Crump around 1988 and trademarked later as Fused Deposition Modeling (FDM). Although all of these technologies have been around for a while, it was not until recently that they have been more accessible to everyone. Today, the market of 3D printers covers all ranges of price, from very specialized, heavy and expensive machines, to desktop printers of only a few cubic inches in volume. Until recently, FDM technology had remained somewhat stagnant …


Aero-Thermal Characterization Of Silicon Carbide Flexible Tps Using A 30kw Icp Torch, Walten Owens Jan 2015

Aero-Thermal Characterization Of Silicon Carbide Flexible Tps Using A 30kw Icp Torch, Walten Owens

Graduate College Dissertations and Theses

Flexible thermal protection systems are of interest due to their necessity for the success of future atmospheric entry vehicles. Current non-ablative flexible designs incorporate a two-dimensional woven fabric on the leading surface of the vehicle. The focus of this research investigation was to characterize the aerothermal performance of silicon carbide fabric using the 30 kW Inductively Coupled Plasma Torch located at the University of Vermont. Experimental results have shown that SiC fabric test coupons achieving surface temperatures between 1000°C and 1500°C formed an amorphous silicon dioxide layer within seconds after insertion into air plasmas. The transient morphological changes that occurred …


Processing And Property Evaluation Of Tungsten-Based Mixed Oxides For Photovoltaics And Optoelectronics, Mirella Vargas Jan 2015

Processing And Property Evaluation Of Tungsten-Based Mixed Oxides For Photovoltaics And Optoelectronics, Mirella Vargas

Open Access Theses & Dissertations

Tungsten Oxide (WO3) films and low-dimensional structures have proven to be promising candidates in the fields of photonics and electronics. WO3 is a well-established n-type semiconductor characterized by unique electrochromic behavior, an ideal optical band gap that permits transparency over a wide spectral range, and high chemical integrity. The plethora of diverse properties endow WO3 to be highly effective in applications related to electrochromism, gas sensing, and deriving economical energy. Compared to the bulk films, a materials system involving WO3 and a related species (elements or metal oxides) offer the opportunity to tailor the electrochromic response, and an overall enhancement …


Hybrid Nano-Structure For Enhanced Energy Storage Devices, Mohammad Arif Ishtiaque Shuvo Jan 2015

Hybrid Nano-Structure For Enhanced Energy Storage Devices, Mohammad Arif Ishtiaque Shuvo

Open Access Theses & Dissertations

The goal of this research is to develop electrode materials using various nano-structure hybrids for improved energy storage devices. Enhancing the performance of energy storage device has been gaining tremendous attention since it holds the key solution to advance renewable energy usage thus reduce the consumption of fossil fuels. The application of energy storage devices such as super-capacitor and Li-ion-battery has seen significant growth; however, it is still limited mainly by charge/discharge rate and energy density. One of the solutions is to use nano-structure materials, which offer higher power at high energy density and improved stability during the charge discharge …


Transition Metal Carbide (Tmc) Novel Materials For Novel Catalytic Applications, Svetlana Lagoykina Jan 2015

Transition Metal Carbide (Tmc) Novel Materials For Novel Catalytic Applications, Svetlana Lagoykina

Open Access Theses & Dissertations

Transition metal carbides (TMC) constitute a diverse class of materials and traditionally have many technological applications. TMC became a subject of extensive research since 1973, when their platinum -like properties were discovered. They demonstrated high catalytical activity and selectivity in a variety of chemical reaction and have potential for some novel catalytic application.

This research is an effort to design new high effective, selective and stable bimetal or alkali promoted TMC catalyst. After extensive theoretical research a wide range of TMC, including bimetal and alkali promoted carbides, were synthesized by different methods. All solids were characterized by XRD and microscopy. …


Design And Analysis Of A Novel Latch System Implementing Fiber-Reinforced Composite Materials, Francisco Guevara Jan 2015

Design And Analysis Of A Novel Latch System Implementing Fiber-Reinforced Composite Materials, Francisco Guevara

Open Access Theses & Dissertations

The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of …


Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari Jan 2015

Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari

Open Access Theses & Dissertations

In the current study, a series of novel magnetic and non-magnetic hybrid nanocomposites based on metal-organic frameworks (MOFs) of M3(BTC)2 (M: Ni, Cu, Zn, and Cd), graphene oxide (GrO), and carbon nanotubes (CNTs), and Fe3O4 magnetic nanoparticles (MNPs) were developed via a green, simple and versatile solvothermal method at which GrO and CNT were used as platform to grow the MOFs and Fe3O4 MNPs over them. The as-synthesized nanocomposites were characterized by XRD, SEM, TEM, XPS, IR, Raman, TGA, and N2 adsorption/desorption isotherms. Morphological analysis confirmed successful growth of nano-size Fe3O4 MNPs and M3(BTC)2 MOFs over GrO and CNT platforms. …