Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Series

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 37

Full-Text Articles in Engineering Science and Materials

Me-Em Enewsbrief, December 2012, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Dec 2012

Me-Em Enewsbrief, December 2012, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Energy Trapping Of Thickness-Shear And Thickness-Twist Modes In A Partially Electroded At-Cut Quartz Resonator, Huijing He, Guoquan Nie, Jinxi Liu, Jiashi Yang Dec 2012

Energy Trapping Of Thickness-Shear And Thickness-Twist Modes In A Partially Electroded At-Cut Quartz Resonator, Huijing He, Guoquan Nie, Jinxi Liu, Jiashi Yang

Department of Mechanical and Materials Engineering: Faculty Publications

The thickness-shear and thickness-twist vibrations of a finite and partially electroded AT-cut quartz resonator are investigated. The equations of anisotropic elasticity are used with the omission of the small elastic constant c56 . An analytical solution is obtained using Fourier series from which the free vibration resonant frequencies, mode shapes, and energy trapping are calculated and examined.


Implementation Of Magnetic Resonance Elastography For The Investigation Of Traumatic Brain Injuries, Thomas Boulet Dec 2012

Implementation Of Magnetic Resonance Elastography For The Investigation Of Traumatic Brain Injuries, Thomas Boulet

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Magnetic resonance elastography (MRE) is a potentially transformative imaging modality allowing local and non-invasive measurement of biological tissue mechanical properties. It uses a specific phase contrast MR pulse sequence to measure induced vibratory motion in soft material, from which material properties can be estimated. Compared to other imaging techniques, MRE is able to detect tissue pathology at early stages by quantifying the changes in tissue stiffness associated with diseases. In an effort to develop the technique and improve its capabilities, two inversion algorithms were written to evaluate viscoelastic properties from the measured displacements fields. The first one was based on …


Vibrations Of Crystal Plates With Surface Structures For Resonator And Sensor Applications, Nan Liu Nov 2012

Vibrations Of Crystal Plates With Surface Structures For Resonator And Sensor Applications, Nan Liu

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

This dissertation is mainly on the theoretical analysis of vibrating crystal plates for acoustic wave resonator and sensor applications. The frequency and mode effects of different surface structures on either or both sides of the crystal plates are the main concerns in this dissertation. These effects are fundamental to the improvement of existing acoustic wave devices, or to the design of new acoustic wave devices, especially new sensors based on these effects.

At first, two-dimensional equations of motion for an anisotropic crystal plate with two thin films on its surfaces are derived by reduction from the three-dimensional equations of anisotropic …


Me-Em Enewsbrief, September 2012, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Sep 2012

Me-Em Enewsbrief, September 2012, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Maximal Force Characteristics Of The Ca2+-Powered Actuator Of Vorticella Convallaria, Sangjin Ryu, Matthew J. Lang, Paul Matsudaira Sep 2012

Maximal Force Characteristics Of The Ca2+-Powered Actuator Of Vorticella Convallaria, Sangjin Ryu, Matthew J. Lang, Paul Matsudaira

Department of Mechanical and Materials Engineering: Faculty Publications

The millisecond stalk contraction of the sessile ciliate Vorticella convallaria is powered by energy from Ca2+ binding to generate contractile forces of ~10 nN. Its contractile organelle, the spasmoneme, generates higher contractile force under increased stall resistances. By applying viscous drag force to contracting V. convallaria in a microfluidic channel, we observed that the mechanical force and work of the spasmoneme depended on the stalk length, i.e., the maximum tension (150–350 nN) and work linearly depended on the stalk length (~2.5 nN and ~30 fJ per 1 mm of the stalk). This stalk-length dependency suggests that motor units of …


Selective Laser Sintering; A Design Of Experiments, Philip David Hopkins, Victor Castillo Phd Aug 2012

Selective Laser Sintering; A Design Of Experiments, Philip David Hopkins, Victor Castillo Phd

STAR Program Research Presentations

Additive Manufacturing (AM), also commonly known as 3D Printing or Rapid Prototyping, is a method of manufacturing that provides for the ability to make intricate internal features and easily customizable parts. The concept is to break a Computer Aided Design (CAD) file into a series of thin layers that are sent to the machine and laid down one layer at a time. Just like any other form of processing, material properties can alter by undergoing this process. Manipulating various parameters of the AM process can allow for different properties to be achieved. For this reason, an in depth study will …


Shear-Horizontal Vibration Modes Of An Oblate Elliptical Cylinder And Energy Trapping In Contoured Acoustic Wave Resonators, Huijing He, Jiashi Yang, John A. Kosinski Aug 2012

Shear-Horizontal Vibration Modes Of An Oblate Elliptical Cylinder And Energy Trapping In Contoured Acoustic Wave Resonators, Huijing He, Jiashi Yang, John A. Kosinski

Department of Mechanical and Materials Engineering: Faculty Publications

We study shear-horizontal free vibrations of an elastic cylinder with an oblate elliptical cross section and a traction-free surface. Exact vibration modes and frequencies are obtained. The results show the existence of thickness-shear and thickness-twist modes. The energy-trapping behavior of these modes is examined. Trapped modes are found wherein the vibration energy is largely confined to the central portion of the cross section and little vibration energy is found at the edges. It is also shown that face-shear modes are not allowed in such a cylinder. The results are useful for the understanding of the energy trapping phenomenon in contoured …


Nonlinear Mechanical Behavior Of The Human Common, External And Internal Carotid Arteries In Vivo, Alexey Kamenskiy, Yuris A. Dzenis, Jason N. Mactaggart, Thomas G. Lynch, Syed A. Jaffar Kazmi, Iraklis I. Pipinos Jul 2012

Nonlinear Mechanical Behavior Of The Human Common, External And Internal Carotid Arteries In Vivo, Alexey Kamenskiy, Yuris A. Dzenis, Jason N. Mactaggart, Thomas G. Lynch, Syed A. Jaffar Kazmi, Iraklis I. Pipinos

Department of Mechanical and Materials Engineering: Faculty Publications

Introduction—The mechanical environment and properties of the carotid artery play an important role in the formation and progression of atherosclerosis in the carotid bifurcation. The purpose of this work was to measure and compare the range and variation of circumferential stress and tangent elastic moduli in the human common (CCA), external (ECA) and internal (ICA) carotid arteries over the cardiac cycle in vivo.

Methods—Measurements were performed in the surgically exposed proximal cervical CCA, distal ECA and distal ICA of normotensive patients (n = 16) undergoing carotid endarterectomy. All measurements were completed in vivo over the cardiac cycle …


Propagation Of Ultrasound Through Freshly Excised Human Calvarium, Armando Garcia Noguera Jul 2012

Propagation Of Ultrasound Through Freshly Excised Human Calvarium, Armando Garcia Noguera

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

The propagation of ultrasound through complex biological media, such as the human calvarium, poses a great challenge for modern medicine. Several ultrasonic techniques commonly used for treatment and diagnosis in most of the human body are still difficult to apply to the human brain, in part, because of the properties of the skull. Moreover, an understanding of the biomechanics of transcranial ultrasound may provide needed insight into the problem of blast wave induced traumatic brain injury (TBI). In the present study, the spatial variability of ultrasonic properties was evaluated for relevant frequencies of 0.5, 1, and 2.25 MHz. A total …


Me-Em Enewsbrief, June 2012, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Jun 2012

Me-Em Enewsbrief, June 2012, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Three-Dimensional Geometry Of The Human Carotid Artery, Alexey Kamenskiy, Jason N. Mactaggart, Iraklis I. Pipinos, Jai Bikhchandani, Yuris A. Dzenis Jun 2012

Three-Dimensional Geometry Of The Human Carotid Artery, Alexey Kamenskiy, Jason N. Mactaggart, Iraklis I. Pipinos, Jai Bikhchandani, Yuris A. Dzenis

Department of Mechanical and Materials Engineering: Faculty Publications

Accurate characterization of carotid artery geometry is vital to our understanding of the pathogenesis of atherosclerosis. Three-dimensional computer reconstructions based on medical imaging are now ubiquitous; however, mean carotid artery geometry has not yet been comprehensively characterized. The goal of this work was to build and study such geometry based on data from 16 male patients with severe carotid artery disease. Results of computerized tomography angiography were used to analyze the cross-sectional images implementing a semiautomated segmentation algorithm. Extracted data were used to reconstruct the mean three-dimensional geometry and to determine average values and variability of bifurcation and planarity angles, …


Development And Validation Of A Model For Granular Material Volume Measurements, Pourya Fasounaki Jun 2012

Development And Validation Of A Model For Granular Material Volume Measurements, Pourya Fasounaki

Department of Industrial and Management Systems Engineering: Dissertations, Theses, and Student Research

Keeping inventory record of packed grains in silos poses challenges since the bulk material’s different segments do not discharge uniformly, leading to formation of random peaks and valleys on the surface. To facilitate obtaining accurate volume measurement of the grains by taking into account this non-linear behavior on the surface, laser or plumb-bob level-sensing devices are employed at different part of the surface to probe the level of material under those regions.

The main goals of this research is to study the behavior of granular material in silo while discharging downward and by doing so, differentiate certain flow patterns formed …


Rehabilitation And Exercise Machine, Judith M. Burnfield, Yu Shu, Thad W. Buster, Carl Nelson May 2012

Rehabilitation And Exercise Machine, Judith M. Burnfield, Yu Shu, Thad W. Buster, Carl Nelson

Department of Mechanical and Materials Engineering: Faculty Publications

An improved rehabilitation and exercise machine is provided which allows a person with physical limitations, disabilities or chronic conditions to use the machine in order to rehabilitate their muscles, improve joint flexibility, and enhance cardiovascular fitness.


Analytic And Finite Element Solutions Of The Power-Law Euler-Bernoulli Beams, Dongming Wei, Yu Liu May 2012

Analytic And Finite Element Solutions Of The Power-Law Euler-Bernoulli Beams, Dongming Wei, Yu Liu

Mathematics Faculty Publications

In this paper, we use Hermite cubic finite elements to approximate the solutions

of a nonlinear Euler-Bernoulli beam equation. The equation is derived

from Hollomon’s generalized Hooke’s law for work hardening materials with

the assumptions of the Euler-Bernoulli beam theory. The Ritz-Galerkin finite

element procedure is used to form a finite dimensional nonlinear program

problem, and a nonlinear conjugate gradient scheme is implemented to find

the minimizer of the Lagrangian. Convergence of the finite element approximations

is analyzed and some error estimates are presented. A Matlab finite

element code is developed to provide numerical solutions to the beam equation.

Some …


Acoustic Emission Detection Of Metals And Alloys During Machining Operations, Jameson K. Nelson Apr 2012

Acoustic Emission Detection Of Metals And Alloys During Machining Operations, Jameson K. Nelson

Purdue Polytechnic Masters Theses

Nelson, Jameson K. M.S., Purdue University, May 2012. Acoustic Emission Detection of Metals and Alloys During Machining Operations. Major Professor: Rodney G. Handy.

Practical correlation between material deformation attributes and theoretical concepts of machining has proven difficult to attain. The purpose of this study was to further explore trends and relationships using acoustic emission detection of materials undergoing single-point lathe turning machine processes. The majority of machining experiments that incorporate acoustic emissions focuses on tool degradation for the purposes of optimizing consumables required to manufacture mechanical devices. Experiments were implemented varying recording location, mechanical barrier condition, and machine parameters. The …


Model-Based Systems And Methods For Analyzing And Predicting Outcomes Of Vascular Interventions And Reconstructions, Yuris A. Dzenis, Alexey Kamenskiy, Iraklis I. Pipinos, Jason N. Mactaggart Apr 2012

Model-Based Systems And Methods For Analyzing And Predicting Outcomes Of Vascular Interventions And Reconstructions, Yuris A. Dzenis, Alexey Kamenskiy, Iraklis I. Pipinos, Jason N. Mactaggart

Department of Mechanical and Materials Engineering: Faculty Publications

Systems and methods for analyzing and predicting treatment outcomes of medical procedures such as vascular interventions and reconstructions are disclosed. An illustrative system for analyzing and predicting therapeutic outcomes of medical procedures comprises a relational database configured for classifying and storing patient specific input data for multiple patients, a fluid-solid interaction biomechanical model configured for performing a biomechanics simulation and generating biomechanics data, and a graphical user interface.


Peridynamic Model For Dynamic Fracture In Unidirectional Fiber-Reinforced Composites, Wenke Hu, Youn Doh Ha, Florin Bobaru Apr 2012

Peridynamic Model For Dynamic Fracture In Unidirectional Fiber-Reinforced Composites, Wenke Hu, Youn Doh Ha, Florin Bobaru

Department of Mechanical and Materials Engineering: Faculty Publications

We propose a computational method for a homogenized peridynamics description of fiber-reinforced composites and we use it to simulate dynamic brittle fracture and damage in these materials. With this model we analyze the dynamic effects induced by different types of dynamic loading on the fracture and damage behavior of unidirectional fiber-reinforced composites. In contrast to the results expected from quasi-static loading, the simulations show that dynamic conditions can lead to co-existence of and transitions between fracture modes; matrix shattering can happen before a splitting crack propagates. We observe matrix–fiber splitting fracture, matrix cracking, and crack migration in the matrix, including …


Me-Em Enewsbrief, March 2012, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Mar 2012

Me-Em Enewsbrief, March 2012, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Effects Of Mismatched Electrodes On An At-Cut Quartz Resonator, Huijing He, Jinxi Liu, Jiashi Yang Feb 2012

Effects Of Mismatched Electrodes On An At-Cut Quartz Resonator, Huijing He, Jinxi Liu, Jiashi Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We study thickness-shear and thickness-twist free vibrations of a finite AT-cut quartz resonator with mismatched electrodes. The equations of anisotropic elasticity are used with the omission of the small elastic constant c56. An analytical solution is obtained using Fourier series from which the resonant frequencies, mode shapes, and vibration confinement resulting from the electrode inertia are calculated and examined.


Generalized Ellipsometry In-Situ Quantification Of Organic Adsorbate Attachment Within Slanted Columnar Thin Films, Keith B. Rodenhausen Jr., Daniel Schmidt, Tadas Kasputis, Angela K. Pannier, Eva Schubert, Mathias Schubert Feb 2012

Generalized Ellipsometry In-Situ Quantification Of Organic Adsorbate Attachment Within Slanted Columnar Thin Films, Keith B. Rodenhausen Jr., Daniel Schmidt, Tadas Kasputis, Angela K. Pannier, Eva Schubert, Mathias Schubert

Department of Chemical and Biomolecular Engineering: Faculty Publications

We apply generalized ellipsometry, well-known to be sensitive to the optical properties of anisotropic materials, to determine the amount of fibronectin protein that adsorbs onto a Ti slanted columnar thin film from solution. We find that the anisotropic optical properties of the thin film change upon organic adsorption. An optical model for ellipsometry data analysis incorporates an anisotropic Bruggeman effective medium approximation. We find that differences in experimental data from before and after fibronectin adsorption can be solely attributable to the uptake of fibronectin within the slanted columnar thin film. Simultaneous, in-situ generalized ellipsometry and quartz crystal microbalance measurements show …


On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski Feb 2012

On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski

Publications

Abstract

The asymptotic stability of solutions of the Mindlin-type microstructure model for solids is analyzed in the paper. It is shown that short waves are asymptotically stable even in the case of a weakly non-convex free energy dependence on microdeformation.

Research highlights

The Mindlin-type microstructure model cannot describe properly short wave propagation in laminates. A modified Mindlin-type microstructure model with weakly non-convex free energy resolves this discrepancy. It is shown that the improved model with weakly non-convex free energy is asymptotically stable for short waves.


Spatial And Temporal Correlations Of Freeway Link Speeds: An Empirical Study, Piotr J. Rachtan Jan 2012

Spatial And Temporal Correlations Of Freeway Link Speeds: An Empirical Study, Piotr J. Rachtan

Masters Theses 1911 - February 2014

Congestion on roadways and high level of uncertainty of traffic conditions are major considerations for trip planning. The purpose of this research is to investigate the characteristics and patterns of spatial and temporal correlations and also to detect other variables that affect correlation in a freeway setting. 5-minute speed aggregates from the Performance Measurement System (PeMS) database are obtained for two directions of an urban freeway – I-10 between Santa Monica and Los Angeles, California. Observations are for all non-holiday weekdays between January 1st and June 30th, 2010. Other variables include traffic flow, ramp locations, number of lanes and the …


A Front Tracking Model Of The Maxus-8 Microgravity Solidification Experiment On A Ti-45.5at.% Al-8at.%Nb Alloy, Robin Mooney, Shaun Mcfadden, Marek Rebow, David J. Browne Jan 2012

A Front Tracking Model Of The Maxus-8 Microgravity Solidification Experiment On A Ti-45.5at.% Al-8at.%Nb Alloy, Robin Mooney, Shaun Mcfadden, Marek Rebow, David J. Browne

Articles

On 26th March 2010 the MAXUS-8 sounding rocket was launched from the Esrange Space Center in Sweden. As part of the Intermetallic Materials Processing in Relation to Earth and Space Solidification (IMPRESS) project, a solidification experiment was conducted on a Ti-45.5at.%Al-8at.%Nb intermetallic alloy in a module on this rocket. The experiment was designed to investigate columnar and equiaxed microstructures in the alloy. A furnace model of the MAXUS 8 experiment with a Front Tracking Model of solidification has been developed to determine the macrostructure and thermal history of the samples in the experiment. This paper gives details of results of …


Nanotopographic Cell Culture Substrate: Polymer-Demixed Nanotextured Films Under Cell Culture Conditions, Jung Yul Lim, Christopher A. Siedlecki, Henry J. Donahue Jan 2012

Nanotopographic Cell Culture Substrate: Polymer-Demixed Nanotextured Films Under Cell Culture Conditions, Jung Yul Lim, Christopher A. Siedlecki, Henry J. Donahue

Department of Mechanical and Materials Engineering: Faculty Publications

Modulating physical cell culture environments via nanoscale substrate topographic modification has recently been of significant interest in regenerative medicine. Many studies have utilized a polymer-demixing technique to produce nanotextured films and showed that cellular adhesion, proliferation, and differentiation could be regulated by the shape and scale of the polymer-demixed nanotopographies. However, little attention has been paid to the topographic fidelity of the polymer-demixed films when exposed to cell culture conditions. In this brief article, two polymer-demixing systems were employed to assess topographic changes in polymer-demixed films after fibronectin (FN) extracellular matrix protein adsorption and after incubation in phosphate-buffered saline at …


Wave Propagation And Dispersion In Microstructured Solids, Arkadi Berezovski, Juri Engelbrecht, Mihhail Berezovski Jan 2012

Wave Propagation And Dispersion In Microstructured Solids, Arkadi Berezovski, Juri Engelbrecht, Mihhail Berezovski

Publications

A series of numerical simulations is carried on in order to understand the accuracy of dispersive wave models for microstructured solids. The computations are performed by means of the finite-volume numerical scheme, which belongs to the class of wave-propagation algorithms. The dispersion effects are analyzed in materials with different internal structures: microstructure described by micromorphic theory, regular laminates, laminates with substructures, etc., for a large range of material parameters and wavelengths.


Usability Assessment Of Two Different Control Modes For The Master Console Of A Laparoscopic Surgical Robot, Xiaoli Zhang, Carl A. Nelson, Dmitry Oleynikov Jan 2012

Usability Assessment Of Two Different Control Modes For The Master Console Of A Laparoscopic Surgical Robot, Xiaoli Zhang, Carl A. Nelson, Dmitry Oleynikov

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this study is to evaluate potential interface control modes for a compact fourdegree- of-freedom (4-DOF) surgical robot. The goal is to improve robot usability by incorporating a sophisticated haptics-capable interface. Two control modes were developed using a commercially available haptic joystick: (1) a virtually point-constrained interface providing an analog for constrained laparoscopic motion (3-DOF rotation and 1-DOF translation), and (2) an unconstrained Cartesian input interface mapping more directly to the surgical tool tip motions. Subjects (n = 5) successfully performed tissue identification and manipulation tasks in an animal model in point-constrained and unconstrained control modes, respectively, with …


Tool Sequence Trends In Minimally Invasive Surgery: Statistical Analysis And Implications For Predictive Control Of Multifunction Instruments, Carl A. Nelson, Evan Luxon, Dmitry Oleynikov Jan 2012

Tool Sequence Trends In Minimally Invasive Surgery: Statistical Analysis And Implications For Predictive Control Of Multifunction Instruments, Carl A. Nelson, Evan Luxon, Dmitry Oleynikov

Department of Mechanical and Materials Engineering: Faculty Publications

This paper presents an analysis of 67 minimally invasive surgical procedures covering 11 different procedure types to determine patterns of tool use. A new graph-theoretic approach was taken to organize and analyze the data. Through grouping surgeries by type, trends of common tool changes were identified. Using the concept of signal/noise ratio, these trends were found to be statistically strong. The tool-use trends were used to generate tool placement patterns for modular (multi-tool, cartridge-type) surgical tool systems, and the same 67 surgeries were numerically simulated to determine the optimality of these tool arrangements. The results indicate that aggregated tool-use data …


Method For Increasing The Efficiency Of Organic Photovoltaic Cells, Jinsong Huang, Yongbo Yuan Jan 2012

Method For Increasing The Efficiency Of Organic Photovoltaic Cells, Jinsong Huang, Yongbo Yuan

Department of Mechanical and Materials Engineering: Faculty Publications

The present invention is directed to an organic photovoltaic cell that contains one or more dipole regions generally disposed between an organic active region and the electrodes and a process for producing such an organic photovoltaic cell.


Moisture Damage Characterization Of Warm-Mix Asphalt Mixtures Based On Laboratory-Field Evaluation, Yong-Rak Kim, Jun Zhang, Hoki Ban Jan 2012

Moisture Damage Characterization Of Warm-Mix Asphalt Mixtures Based On Laboratory-Field Evaluation, Yong-Rak Kim, Jun Zhang, Hoki Ban

Department of Mechanical and Materials Engineering: Faculty Publications

This study presents laboratory evaluation integrated with field performance to examine two widely used warm-mix asphalt (WMA) approaches—foaming and emulsion technology. For a more realistic evaluation of the WMA approaches, trial pavement sections of the WMA mixtures and their counterpart hot-mix asphalt (HMA) mixtures were implemented in Antelope County, Nebraska. Field-mixed loose mixtures collected at the time of paving were transported to the laboratories to conduct various experimental evaluations of the individual mixtures. Among the laboratory tests, three (two conventional and one newly attempted) were performed to characterize moisture damage potential which is the primary focus of this study. From …