Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering Science and Materials

Two-Scale Microstructure Dynamics, Arkadi Berezovski, Mihhail Berezovski, Juri Engelbrecht Sep 2011

Two-Scale Microstructure Dynamics, Arkadi Berezovski, Mihhail Berezovski, Juri Engelbrecht

Publications

Wave propagation in materials with embedded two different microstructures is considered. Each microstructure is characterized by its own length scale. The dual internal variables approach is adopted yielding in a Mindlin-type model including both microstructures. Equations of motion for microstructures are coupled with the balance of linear momentum for the macromotion, but not coupled with each other. Corresponding dispersion curves are provided and scale separation is pointed out.


A Study On Facility Planning Using Discrete Event Simulation: Case Study Of A Grain Delivery Terminal., Sarah M. Asio Jul 2011

A Study On Facility Planning Using Discrete Event Simulation: Case Study Of A Grain Delivery Terminal., Sarah M. Asio

Department of Industrial and Management Systems Engineering: Dissertations, Theses, and Student Research

The application of traditional approaches to the design of efficient facilities can be tedious and time consuming when uncertainty and a number of constraints exist. Queuing models and mathematical programming techniques are not able to capture the complex interaction between resources, the environment and space constraints for dynamic stochastic processes. In the following study discrete event simulation is applied to the facility planning process for a grain delivery terminal. The discrete event simulation approach has been applied to studies such as capacity planning and facility layout for a gasoline station and evaluating the resource requirements for a manufacturing facility. To …


Cavitation Modelling Based On Eulerian-Eulerian Multiphase Flow, Rachid Bannari Ph.D Jun 2011

Cavitation Modelling Based On Eulerian-Eulerian Multiphase Flow, Rachid Bannari Ph.D

Rachid BANNARI

Cavitation is a physical phenomenon encountered in the normal operation of hydraulic turbines. It can lead to loss in efficiency, vibrations and blade erosion damages. It is crucial to accurately predict cavitation development and evolution to make confident predictive results for hydraulic turbines in a cavitating regime. The cavity closure is a critical region that is characterized by its unsteady and unstable behavior. In this region, liquid and vapor are highly mixed and experienced a strong interaction between the cavity and the outer flow. Most of the published work is based on the mixture multiphase model. An important limitation of …


On The Derivation Of Boundary Conditions From The Global Principles Of Continuum Mechanics, Gerald G. Kleinstein May 2011

On The Derivation Of Boundary Conditions From The Global Principles Of Continuum Mechanics, Gerald G. Kleinstein

Gerald G. Kleinstein

We consider the motion of a fluid exterior to a moving rigid obstacle, or interior to a moving rigid shell. The boundary conditions, such as the no-slip condition and the condition of an isothermal wall, applied in the solution of the system of differential equations describing these motions, are currently assumed to be an approximation derived from experimental observation rather than an exact law. It is the purpose of this paper to show that the boundary conditions at a material interface between a fluid and a solid are derivable from the global principles of balance of continuum mechanics and the …


Development And Analysis Of Onboard Translunar Injection Targeting Algorithms, Phillippe Lyles Winters Reed May 2011

Development And Analysis Of Onboard Translunar Injection Targeting Algorithms, Phillippe Lyles Winters Reed

Masters Theses

Several targeting algorithms are developed and analyzed for possible future use onboard a spacecraft. Each targeter is designed to determine the appropriate propulsive burn for translunar injection to obtain desired orbital parameters upon arrival at the moon. Primary design objectives are to minimize the computational requirements for each algorithm but also to ensure reasonable accuracy, so that the algorithm’s errors do not force the craft to conduct large mid-course corrections. Several levels of accuracy for dynamical models are explored, the convergence range and speed of each algorithm are compared, and the possible benefits of the Broyden and trust-region targeters are …


Waves In Microstructured Solids: A Unified Viewpoint Of Modelling, Arkadi Berezovski, Juri Engelbrecht, Mihhail Berezovski Mar 2011

Waves In Microstructured Solids: A Unified Viewpoint Of Modelling, Arkadi Berezovski, Juri Engelbrecht, Mihhail Berezovski

Publications

The basic ideas for describing the dispersive wave motion in microstructured solids are discussed in the one-dimensional setting because then the differences between various microstructure models are clearly visible. An overview of models demonstrates a variety of approaches, but the consistent structure of the theory is best considered from the unified viewpoint of internal variables. It is shown that the unification of microstructure models can be achieved using the concept of dual internal variables.


On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski Feb 2011

On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski

Publications

The asymptotic stability of solutions of the Mindlin-type microstructure model for solids is analyzed in the paper. It is shown that short waves are asymptotically stable even in the case of a weakly non-convex free energy dependence on microdeformation.


Termodynamika Procesowa (Dla Me Aparatura Procesowa) Ćw., Wojciech M. Budzianowski Jan 2011

Termodynamika Procesowa (Dla Me Aparatura Procesowa) Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


The Analysis Of Heat Transfer In A Gas-Gas Heat Exchanger Operated Under A Heat-Recirculating Mode, Mariusz Salaniec, Wojciech M. Budzianowski Jan 2011

The Analysis Of Heat Transfer In A Gas-Gas Heat Exchanger Operated Under A Heat-Recirculating Mode, Mariusz Salaniec, Wojciech M. Budzianowski

Wojciech Budzianowski

The present paper presents the analysis of heat transfer in a gas-gas heat exchanger operated in a heat-recirculating mode.


An Overview Of Technologies For Upgrading Of Biogas To Biomethane, Wojciech M. Budzianowski Jan 2011

An Overview Of Technologies For Upgrading Of Biogas To Biomethane, Wojciech M. Budzianowski

Wojciech Budzianowski

The present contribution presents an overview of technologies available for upgrading of biogas to biomethane. Technologies under study include pressure swing adsorption (PSA), high-pressure water wash (HPWW), reactive absorption (RA), physical absorption (PA), membrane separation (MS) and cryogenic separation (CS).


Influence Of Energy Policy On The Rate Of Implementation Of Biogas Power Plants In Germany During The 2001-2010 Decade, Izabela Chasiak, Wojciech M. Budzianowski Jan 2011

Influence Of Energy Policy On The Rate Of Implementation Of Biogas Power Plants In Germany During The 2001-2010 Decade, Izabela Chasiak, Wojciech M. Budzianowski

Wojciech Budzianowski

The current article describes energy policy tools, which caused intensive development of biogas-based power generation in Germany during the 2001-2010 decade. The German system of financial support to biogas power plants is presented in details. It is shown that in Germany, i.e. in a country characterised by similar climate and potentials to renewable energy to Poland, biogas power plants cover 10,7% of electricity demands in 2010, while all renewable energy sources cover only 5,4% of electricity demands. It is emphasised that under favourable Polish energy policy, the development of biogas energy can be very rapid.


Solving The Partial Differential Equation Of Vibrations With Interval Parameters Using The Interval Finite Difference Method, Brenda G. Medina Jan 2011

Solving The Partial Differential Equation Of Vibrations With Interval Parameters Using The Interval Finite Difference Method, Brenda G. Medina

Open Access Theses & Dissertations

Accuracy and efficiency are among the main factors that drive today's innovative disciplines. As technology rapidly advances, efficiency takes on new meanings but what about accuracy? How accurate is accurate? Human error, uncertainties in measurement, and rounding errors are just some causes of inaccuracy. Interval Computations is an area that allows for such issues to be taken into account; for each measurement attained (for example), an interval can be built by considering the error associated with the measurement, and such an interval can be utilized in the mathematical computations of interest.

We consider the partial differential equation (PDE) of vibrations …


Dispersive Wave Equations For Solids With Microstructure, A. Berezovski, Juri Engelbrecht, Mihhail Berezovski Jan 2011

Dispersive Wave Equations For Solids With Microstructure, A. Berezovski, Juri Engelbrecht, Mihhail Berezovski

Publications

The dispersive wave motion in solids with microstructure is considered in the one-dimensional setting in order to understand better the mechanism of dispersion. It is shown that the variety of dispersive wave propagation models derived by homogenization, continualisation, and generalization of continuum mechanics can be unified in the framework of dual internal variables theory.