Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering Science and Materials

Effect Of Steam Environment On Creep Behavior Of Nextel720/Alumina-Mullite Ceramic Matrix Composite At Elevated Temperature, Tolga Kutsal Mar 2009

Effect Of Steam Environment On Creep Behavior Of Nextel720/Alumina-Mullite Ceramic Matrix Composite At Elevated Temperature, Tolga Kutsal

Theses and Dissertations

The tensile creep behavior of an oxide-oxide ceramic matrix composite (CMC) was investigated at 1000 and 1100° C in laboratory air and steam. The oxide-oxide CMC studied in this research was Nextel™ 720/alumina-mullite (N720/AM). The composite consists of N720/fibers with 0°/90° fiber orientation and a porous alumina-mullite matrix. Tensile-strain behavior was investigated and tensile properties measured at 900, 1000 and 1100° C. The effect of loading rate on tensile properties of N720/AM ceramic matrix composite at 1100° C in steam was also examined. Creep-rupture tests were performed at 1100° C in laboratory air and steam, and at 1000° C only …


A Finite Element Evaluation Of An Experiment Related To Coating Damping Properties, Armando Deleon Mar 2009

A Finite Element Evaluation Of An Experiment Related To Coating Damping Properties, Armando Deleon

Theses and Dissertations

Typically turbine engine blades gain protection from thermal damage by the use of hard coatings, such as magnesium aluminate spinel. Known as Thermal Barrier Coatings (TBC's), they have material properties that include several nonlinearities. These TBC's create damping primarily due to their nonlinear dissipation of energy. In order to effectively represent their damping properties, it is necessary to create a method which combines experimentation and analysis. Previous work has shown the need for a beam bounded and loaded in such a fashion that external support energy dissipation functions i.e. boundary conditions and aerodynamics are eliminated. Thus, a new experimental apparatus …


Effects Of Prior Aging At 316°C In Argon On Inelastic Deformation Behavior Of Pmr-15 Polymer At 316°C: Experiment And Modeling, Ozgur Ozmen Mar 2009

Effects Of Prior Aging At 316°C In Argon On Inelastic Deformation Behavior Of Pmr-15 Polymer At 316°C: Experiment And Modeling, Ozgur Ozmen

Theses and Dissertations

The inelastic deformation behavior of PMR-15 neat resin, a high-temperature polymer, was investigated at 316 deg C. The experimental program was designed to explore the influence of strain rate on tensile loading, unloading, and strain recovery behaviors. In addition, the effect of the prior strain rate on the relaxation response of the material, as well as on the creep behavior following strain controlled loading were examined. The material exhibits positive, nonlinear strain rate sensitivity in monotonic loading and unloading. Early failures occur in the inelastic regime. The recovery of strain at zero stress and creep response are strongly affected by …


Thermomechanical Properties Of Center-Reinforced Aluminum, Geofrey S. Cox Mar 2009

Thermomechanical Properties Of Center-Reinforced Aluminum, Geofrey S. Cox

Theses and Dissertations

The rule of mixture approach was shown to produce an accurate theoretical prediction of the room temperature elastic modulus values when compared to the experimental results. The laminate's modulus value remained relatively constant over the -55C to 80C temperature range, indicating stable behavior despite temperature changes. Blunt notch tests also revealed that the laminate's strength was not significantly reduced due to the presence of small holes. Finally, fatigue testing demonstrated that the laminate retains its stiffness properties throughout its fatigue life, until failure.