Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

2008

Fretting corrosion

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

The Effect Of Elevated Temperature On The Fretting Fatigue Behavior Of Nickel Alloy In-100, John F. Ownby Apr 2008

The Effect Of Elevated Temperature On The Fretting Fatigue Behavior Of Nickel Alloy In-100, John F. Ownby

Theses and Dissertations

This thesis studied the effect of elevated temperature (600 C) on the fretting fatigue behavior of IN-100. First, fretting and plain fatigue S-N curves were determined over a large range of applied stress at an identical stress ratio of 0.03 at 600 C and for fretting tests, with a constant contact load. The partial slip condition was verified by using hysteresis between shear force and axial stress techniques. The contact width and the crack initiation location were observed for all of the fretting specimens. The contact widths were consistent with expected values and the crack initiation location was at the …


Investigation Into Fretting Fatigue Under Cyclic Contact Load And In Conjuction With Fatigue Of Titanium Alloy, Abdulla A. Al-Noaimi Mar 2008

Investigation Into Fretting Fatigue Under Cyclic Contact Load And In Conjuction With Fatigue Of Titanium Alloy, Abdulla A. Al-Noaimi

Theses and Dissertations

Fretting fatigue is the surface damage that occurs at the interface between two components that are undergoing a small amplitude oscillatory movements. It results in a reduction of the material life comparing to the plain fatigue. Most of the previous works were accomplished under a constant applied contact load and a little effort has been done under a variable contact load, while none of these studies have taken the phase difference between the axial and the contact load. The primary goal of this study is to investigate the effect of phase difference between axial and contact loads on fretting fatigue …