Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering Science and Materials

Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi Dec 2022

Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi

Civil and Environmental Engineering Theses and Dissertations

Various seismic and wind engineering designs and retrofit strategies have been in development to meet structures' proper and safe operation during earthquake and wind excitation. One such method is the addition of fluid and particle dampers, such as sand dampers, in an effort to reduce excessive and dangerous displacements of structures. The present study implements the discrete element method (DEM) to assess the performance of a pressurized sand damper (PSD) and characterize the dissipated energy under cyclic loading. The idea of a PSD is to exploit the increase in shearing resistance of sand under external pressure and the associated ability …


The Thermal And Mechanical Characteristics Of Lithiated Peo Lagp Composite Electrolytes, Jacob Michael Denney Jan 2020

The Thermal And Mechanical Characteristics Of Lithiated Peo Lagp Composite Electrolytes, Jacob Michael Denney

Browse all Theses and Dissertations

Lithium-ion batteries are part of a multibillion-dollar industry that strives to meet the demands for an increasingly advanced technological future. Flexible batteries can be easily adapted from emerging novel wearable electronics to electrical vehicles and advanced solar panels. Solid-state batteries can greatly reduce the risk of fire or leaking hazardous materials due to puncture. For the development of solid-state flexible lithium based batteries polymer-ceramic composites are attractive electrolyte candidates because of their combined properties, such as electrical, thermal and mechanical properties, that not only overcome limitations from the base materials but may also render some enhanced performances resulting from the …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Design And Control Of Fiber Encapsulation Additive Manufacturing, Matt Saari May 2019

Design And Control Of Fiber Encapsulation Additive Manufacturing, Matt Saari

Mechanical Engineering Research Theses and Dissertations

This work presents the design, development, and analysis of the Fiber Encapsulation Additive Manufacturing (FEAM) system developed at the Laboratory for Additive Manufacturing Robotics \& Automation at the Lyle School of Engineering at Southern Methodist University. The innovation introduced by FEAM is the ability to insert a continuous fiber of different material into the flowing extrudate. Correctly positioning the fiber feed inside the extrudate while turning the fiber in arbitrary directions is a critical aspect of the technology. This will allow for the full exploitation of the capabilities of the FEAM technology to produce robotic components that actuate and sense. …


Preparation And Characterization Of Porous Pdms For Printed Electronics, Eyad Khalid M. Balbaid Jan 2019

Preparation And Characterization Of Porous Pdms For Printed Electronics, Eyad Khalid M. Balbaid

Browse all Theses and Dissertations

Fabricating an elastomeric substrate with internal features could provide a novel structure with distinctive mechanical properties that allow them to stretch, bend and absorb the impact force. To date, polydimethylsiloxane (PDMS) is a great candidate as a substrate for flexible electronic applications, due to easy fabrication, high stability and low cost. In the current thesis, porous PDMS samples are fabricated and characterized based on the particle size and the fusion of salt and sugar treated micro-regions. The liquid PDMS is prepared by mixing the silicon elastomer base (Sylgard 184) and elastomer curing agent using volume ration 10:1. The salt and …


Microstructural Characterization Of LensTm Ti-6al-4v: Investigating The Effects Of Process Variables Across Multiple Deposit Geometries, Laura Christine Davidson Jan 2018

Microstructural Characterization Of LensTm Ti-6al-4v: Investigating The Effects Of Process Variables Across Multiple Deposit Geometries, Laura Christine Davidson

Browse all Theses and Dissertations

Laser based additive manufacturing of Ti-6Al-4V components is under consideration for aerospace applications. The mechanical properties of the finished components depend on their microstructure. Process mapping compares process variables such as heat source power, heat source travel speed, material feed rate, part preheat temperature and feature geometry to process outcomes such as microstructure, melt pool geometry and residual stresses. In this work, the microstructure of two-dimensional pads, multilayer pads, thin walls, and structural components at the steady state location was observed. A method for measuring β grain widths that allows for the calculation of standard deviations, confidence intervals, and variances …


Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee Jun 2014

Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee

Mechanical Engineering

This report discusses the design, construction, and testing of a lightweight, portable UAV launcher. There is a current need for a small team of soldiers to launch a US Marine Tier II UAV in a remote location without transport. Research was conducted into existing UAV launcher designs and the pros and cons of each were recorded. This research served as a basis for concept generation during the initial design development stage. It was required that the design weigh less than 110 lbs, occupy a smaller volume than 48" x 24" 18" in its collapsed state, be portable by a single …