Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biomedical Engineering and Bioengineering

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 43

Full-Text Articles in Engineering Science and Materials

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


The Development And Testing Of A Gyroscope-Based Neck Strengthening Rehabilitation Device, Nicole D. Devos Feb 2024

The Development And Testing Of A Gyroscope-Based Neck Strengthening Rehabilitation Device, Nicole D. Devos

Electronic Thesis and Dissertation Repository

Neck pain can be debilitating, and is experienced by the majority of people at some point over the course of their life. Resistance training has been shown to have significant improvement in pain or disability for patients. There are few options available for telerehabilitation, and the use of gyroscope stabilizers is proposed for this use. A biomechanics model of a head--neck--gyroscope system was created. In order to also model the dynamics of such a system, this work proposes a blended method using the Denavit--Hartenberg (DH) convention, popular in the field of robotics, with the Lagrangian mechanics approach to analyze an …


Soil Respiration Measurements Reveal High Retention Of Organic Carbon From Corn Residue Derived High-Lignin Fermentation Byproduct Enabling Sustainable Lignocellulosic Biofuel Production, Michelle Sun Wang May 2023

Soil Respiration Measurements Reveal High Retention Of Organic Carbon From Corn Residue Derived High-Lignin Fermentation Byproduct Enabling Sustainable Lignocellulosic Biofuel Production, Michelle Sun Wang

Dartmouth College Master’s Theses

While 2G biofuel production can utilize non-edible, lignocellulosic feedstocks such as agricultural residues to produce liquid fuel, harvesting crop residues is unsustainable without careful management of the soil underneath. By harvesting a fraction of the crop residues left in the field after harvest, soil health can diminish and critically, the soil organic carbon (SOC) stored in agricultural fields can decrease. Currently, in the most popular 2G process models published, the issue of soil degradation remains unresolved with residue harvest strategies receiving considerable attention in the literature and other SOC management strategies receiving far less. Specifically, the strategy of returning the …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player Jan 2023

Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player

Dartmouth College Master’s Theses

This project seeks to develop an updated version of a microwave imaging device for use in conjunction with breast MRI, improving upon existing technology and developing novel concepts for the device. It posits three primary redesign targets for updating the previous system: resizing the system height, making the device more iteration- friendly, and improving the overall manufacturability of the device by replacing custom components with commercially available alternatives. All three of these redesign targets are met in the new design, V2.0. The height is reduced by reducing antenna travel and height, embedding some components, and shortening the tank wall, resulting …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Plasmonic Nanomaterials-Based Point-Of-Care Biosensors, Rohit Gupta Aug 2022

Plasmonic Nanomaterials-Based Point-Of-Care Biosensors, Rohit Gupta

McKelvey School of Engineering Theses & Dissertations

Point-of-care (POC) biosensors, although rapid and easy-to-use, are orders magnitude less sensitive than laboratory-based tests. Further they are plagued by poor stability of recognition element thus limiting its widespread applicability in resource-limited settings. Therefore, there is a critical need for realizing stable POC biosensors with sensitivity comparable to gold-standard laboratory-based tests. This challenge constitutes the fundamental basis of this dissertation work– to expand access to quality and accurate biodiagnostic tools. At the heart of these solutions lies plasmonic nanoparticles which exhibit unique optical properties which are attractive for label-free and labelled biosensors.Firstly, we improve the stability and applicability of label-free …


Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons May 2022

Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons

Theses and Dissertations

Fatigue testing of stretch sensors often focuses on high amplitude, low-cycle fatigue (LCF) behavior; however, when used for orthopaedic, athletic, or ergonomic assessments, stretch sensors are subjected to low amplitude, high-cycle fatigue (HCF) conditions. As an added layer of complexity, the fatigue testing of stretch sensors is not only focused on the life of the material comprising the sensor, but also on the reliability of the signal produced during the extension and relaxation of the sensor. Research into the development of a smart sock that can be used to measure the range of motion (ROM) of the ankle joint during …


Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling May 2022

Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling

University of New Orleans Theses and Dissertations

Anatomical phantoms used in biomedical education and training benefit greatly from Fused filament fabrication’s (FFF) ability to rapidly produce complex and unique models. Current materials and methods used in FFF have limited ability to accurately produce phantoms that can mimic the radiological properties of multiple biological tissues. This research demonstrates that the CT contrast of FFF produced models can be modified by varying the concentration of bismuth oxide in acrylonitrile butadiene styrene (ABS) filaments and a tunable CT contrast that mimics the CT contrast ranging from fatty tissue to cortical bone using a single composite filament without introducing artificial image …


Insole Fall Prevention Device, Nick M. Hughes, Andrew M. Slaboda May 2022

Insole Fall Prevention Device, Nick M. Hughes, Andrew M. Slaboda

Biomedical Engineering

Falls among the aging population occur every single day, with 1 in every 5 resulting in some injury and 300,000 hospitalized every year with a hip fracture [1]. The most popular and effective way to mitigate these falls is through physical therapist intervention. However, with the increased popularity in telerehab, many patients at risk for falls cannot accurately convey their gait tendencies to their physical therapists from the comfort of their home or while not in direct contact with the PT. A device like an insole, implanted with force sensors, which measures different parts of a patient’s foot, could convey …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Influence Of Extracellular Matrix Stiffness And Topography On Neuronal Cell Behavior And Neurite Outgrowth, Mohan Yasodharababu Jul 2021

Influence Of Extracellular Matrix Stiffness And Topography On Neuronal Cell Behavior And Neurite Outgrowth, Mohan Yasodharababu

Graduate Theses and Dissertations

The focus of regeneration therapy for traumatic brain injuries and Alzheimer's disease is on the promotion and growth of neuronal cells. In vitro research attempts to improve this by modifying the stiffness and topography of the extracellular matrix (ECM). However, the limitations of in vitro experiments make it difficult to control the individual factors influencing neuronal cell growth. A computational model can be used to decouple individual factors and study them individually to gain a better understanding of the mechanics between the neuronal cell and ECM, which will aid in the design of in vitro experimental studies.

This study develops …


Plasmonically-Enhanced Ultrasensitive Biodetection Technologies, Zheyu Wang May 2021

Plasmonically-Enhanced Ultrasensitive Biodetection Technologies, Zheyu Wang

McKelvey School of Engineering Theses & Dissertations

Detection and quantification of biomolecules within biological fluids and tissues is of fundamental importance to biomedical research and clinical diagnostics. It is impossible to fully characterize complex, non-linear, biochemical systems without being able to accurately and quantitatively determine the component molecules. This problem is ubiquitous across all domains of biomedical research, and it is a major barrier to fully understanding health, ageing, and disease. Such bottlenecks are extremely challenging to be solved, especially for proteins and peptides, which do not have amplification schemes such as polymerase chain reaction for nucleic acids, because relevant concentrations of molecules related to diseases such …


Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins May 2021

Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins

Mechanical Engineering Undergraduate Honors Theses

According to the CDC, atrial fibrillation is responsible for more than 454,000 hospitalizations and approximately 158,000 deaths per year. A common treatment for atrial fibrillation is catheter ablation, a process in which a long flexible tube is guided through the femoral artery and to the source of arrhythmia in the heart, where it measures the electrical potential at various locations and converts problematic heart tissue to scar tissue via ablation. This paper details the design and control of a low-cost ($400) peristaltic pump system using repetitive control to replicate blood pressure in the left atrium in a conductive silicone model …


Nanoscale Enhancement Of Photosensitized Radionuclide Stimulated Therapy, Daniel Douglas Lane Jan 2021

Nanoscale Enhancement Of Photosensitized Radionuclide Stimulated Therapy, Daniel Douglas Lane

McKelvey School of Engineering Theses & Dissertations

Photodynamic therapy (PDT) provides efficient tumor killing through the generation of reactive oxygen species (ROS) from the optical excitation of a photosensitizer (PS). Furthermore, this mechanism is highly immune stimulating, providing systemic tumor immunity with a reduction in metastasis. However, these materials had previously been limited by their dependence upon external light sources, allowing treatment of only laser-accessible malignancy. With the recent development of photosensitized radiation stimulated therapy (PRaST) this depth dependence is broken through co-localization of radionuclides and semiconducting photosensitizers. This dissertation focuses on the enhancement of titanium dioxide (TiO2) based PRaST agents through understanding of TiO2 material parameters …


Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E. Jan 2021

Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E.

Theses and Dissertations--Mechanical Engineering

Laser Powder Bed Fusion (L-PBF) is one of the most promising Additive Manufacturing (AM) methods to fabricate near net-shape metallic materials for a wide range of applications such as patient-specific medical devices, functionally graded materials, and complex structures. NiTi shape memory alloys (SMAs) are of great interest due to a combination of unique features, such as superelasticity, shape memory effect, high ductility, work output, corrosion resistance, and biocompatibility that could be employed in many applications in automotive, aerospace, and biomedical industries. Due to the difficulties with traditional machining and forming of NiTi components, the ability to fabricate complex parts, tailor …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …


Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii Jan 2020

Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii

Theses and Dissertations--Biomedical Engineering

It has been observed through numerous academic and governmental agency studies that pediatric all-terrain vehicle ridership carries significant risk of injury and death. While no doubt valuable to safety, the post-hoc approach employed in these studies does little to explain the why and how behind the risk factors. Furthermore, there has been no prolonged, widespread, organized, and concerted effort to reconstruct and catalog the details and causes of the large (20,000+) number of ATV-related injuries that occur each year as has been done for road-based motor vehicle accidents. This dissertation takes the opposite approach from a meta-analysis and instead examines …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee Deberardinis May 2019

The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee Deberardinis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Introduction: The mechanical characteristics of the plantar tissues during walking is not well understood as most of the current research focuses on testing specific plantar regions in cadavers or while the feet of the participants are raised. In this work, it is hypothesized that a viscoelastic geometric ellipsoid model used to assess multiple structures of the foot would be accurate and robust. This model would be participant-specific and applicable to the entire stance phase of gait.

Methods: The proposed viscoelastic ellipsoid model would represent several key anatomical areas: Heel, Posterior Midfoot, Anterior Midfoot, Metatarsals 1-2, Metatarsals 3-5, Toe 1, Toe …


Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li Sep 2018

Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li

Electronic Thesis and Dissertation Repository

Tissue engineering aims to regenerate damaged and deceased tissue by combining cells with scaffold made from an appropriate biomaterial and providing a conducive environment to guide cell growth and the formation or regeneration of new tissue or organ. While collagen, an important material of the extracellular matrix (ECM), is a natural choice as a scaffold biomaterial, the conducive environment can only be created by having the ability to control the geometry, organization, structural and mechanical properties of the scaffold. Moreover, degradability and degradation rate control of the scaffold has to be taken into consideration too. In this work, we aim …


Analysis Of The Low-Cycle Fatigue Behavior Of Silicone Rubber For Biomedical Balloons, Chase Cooper Jun 2018

Analysis Of The Low-Cycle Fatigue Behavior Of Silicone Rubber For Biomedical Balloons, Chase Cooper

Materials Engineering

The development of a medical drug delivery device that allows for the deployment drugs into the adventitial tissue of blood vessels requires the inflation of a silicone elastomer. The inflated silicone must be able to consistently endure multiple loading cycles without failing so that the device can operate reliably. There are multiple methods of processing the silicone for the device and the goal of this study is to examine the effect of the various processing methods on the characteristics of the silicone. The Dynamic Mechanical Analysis Machine (DMA) is used to model the conditions of the device’s application by performing …


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to …


Functional Bio-Nano Hybrids Through A Precise Control Of Interfacial Interactions At The Nanoscale, Sirimuvva Tadepalli Dec 2017

Functional Bio-Nano Hybrids Through A Precise Control Of Interfacial Interactions At The Nanoscale, Sirimuvva Tadepalli

McKelvey School of Engineering Theses & Dissertations

During the course of evolution, proteins have evolved to perform exquisite functions including structural support, signal transduction, actuation, sensing, catalysis, trafficking, gating, light-harvesting, charge transfer, molecular recognition, self-assembly, self-organization, or combinations of two or more of these functions. A precise control and manipulation of the structure and function of proteins is conceivable with the advent of nanotechnology, which has facilitated the integration of nanomaterials with functional biomolecules to realize bio-nano hybrids with synergistically enhanced functionalities.

At the genesis of bionanotechnology, a paucity in the fundamental understanding of the bio-nano interfaces is a grave impediment to the progress of the field. …


Characterization Of Structural Dynamics Of The Human Head Using Magnetic Resonance Elastography, Andrew Arun Badachhape Dec 2017

Characterization Of Structural Dynamics Of The Human Head Using Magnetic Resonance Elastography, Andrew Arun Badachhape

McKelvey School of Engineering Theses & Dissertations

In traumatic brain injury (TBI), the skull-brain interface, composed of three meningeal layers: the dura mater, arachnoid mater, and pia mater, along with cerebrospinal fluid (CSF) between the layers, plays a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is a noninvasive imaging modality capable of providing in vivo estimates of tissue motion and material properties. The objective of this work is to augment human and phantom MRE studies to better characterize the mechanical contributions of the skull-brain interface to improve the parameterization and validation of computational models of TBI. Three specific aims …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword Aug 2017

Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword

LSU Doctoral Dissertations

The engineering of floating media biofilters has been optimized over the years. The backwashing process has made them more energy and water efficient. Likewise, moving bed bioreactors (MBBR) are gaining interest and popularity because they are relatively affordable to build. Yet, developing countries’ aquaculture production remains largely excluded from the advances made in recirculating aquaculture systems (RAS). This discrepancy is partially driven by the high costs of media such plastic beads and Kaldnes (KMT) media, commonly used in MBBR.

This dissertation evaluates the usability and profitability of rice hulls (RH), an abundant by-product in many developing nations, as a sinking …


Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson Aug 2017

Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson

McKelvey School of Engineering Theses & Dissertations

Despite enormous efforts, cancer remains a leading cause of morbidity and mortality world-wide. The main challenges currently facing cancer therapy include lack of adequate tumor targeting, failure to treat hypoxic tumor cells, and induction therapy resistant tumors. A solution to these limitations can be found in photodynamic therapy (PDT) which combines light and light activatable compounds, photosensitizers (PSs), to produce cytotoxic reactive oxygen species (ROS) to damage tumor tissue. This creates a spatiotemporal therapeutic effect, where cell damage only occurs at the intersection of the PS and light. PDT can treat tumors through unique mechanisms which reduce induction of tumor …