Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Discipline
Institution
Keyword
Publication Year
Publication
File Type

Articles 571 - 600 of 982

Full-Text Articles in Engineering Science and Materials

Active Stiffening Of F-Actin Network Dominated By Structural Transition Of Actin Filaments Into Bundles, Shengmao Lin, Xinwei Han, Gary C.P. Tsui, David Hui, Linxia Gu Jan 2016

Active Stiffening Of F-Actin Network Dominated By Structural Transition Of Actin Filaments Into Bundles, Shengmao Lin, Xinwei Han, Gary C.P. Tsui, David Hui, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Molecular motor regulated active contractile force is key for cells sensing and responding to their mechanical environment, which leads to characteristic structures and functions of cells. The F-actin network demonstrates a two-order of magnitude increase in its modulus due to contractility; however, the mechanism for this active stiffening remains unclear. Two widely acknowledged hypotheses are that active stiffening of F-actin network is caused by (1) the nonlinear force-extension behavior of cross-linkers, and (2) the loading mode being switched from bending to stretching dominated regime. Direct evidence supporting either theory is lacking. Here we examined these hypotheses and showed that a …


Low Temperature Solution-Processed Sb:Sno2 Nanocrystals For Efficient Planar Perovskite Solar Cells, Yang Bai, Yanjun Fang, Yehao Deng, Qi Wang, Jingjing Zhao, Xiaopeng Zheng, Yang Zhang, Jinsong Huang Jan 2016

Low Temperature Solution-Processed Sb:Sno2 Nanocrystals For Efficient Planar Perovskite Solar Cells, Yang Bai, Yanjun Fang, Yehao Deng, Qi Wang, Jingjing Zhao, Xiaopeng Zheng, Yang Zhang, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Inorganic metal oxide electron-transport layers (ETLs) have the potential to yield perovskite solar cells with improved stability, but generally need high temperature to form conductive and defect-less forms, which is not compatible with the fabrication of flexible and tandem solar cells. Here, we demonstrate a facile strategy for developing efficient inorganic ETLs by doping SnO2 nanocrystals (NCs) with a small amount of Sb using a low-temperature solution-processed method. The electrical conductivity was remarkably enhanced by Sb-doping, which increased the carrier concentration in Sb:SnO2 NCs. Moreover, the upward shift of the Fermi level owing to doping results in improved …


Development Of A Synthetic Gene Network To Modulate Gene Expression By Mechanical Forces, Zoltan Kis, Tania Rodin, Asma Zafar, Zhangxing Lai, Grace Freke, Oliver Fleck, Armando Del Rio Hernandez, Leila Towhidi, Ryan M. Pedrigi, Takayuki Homma, Rob Krams Jan 2016

Development Of A Synthetic Gene Network To Modulate Gene Expression By Mechanical Forces, Zoltan Kis, Tania Rodin, Asma Zafar, Zhangxing Lai, Grace Freke, Oliver Fleck, Armando Del Rio Hernandez, Leila Towhidi, Ryan M. Pedrigi, Takayuki Homma, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert …


Experimental Explanation Of The Formation Mechanism Of Surface Mound-Structures By Femtosecond Laser On Polycrystalline Ni60Nb40, Edwin Peng, A. Tsubaki, Craig A. Zuhlke, Meiyu Wang, Ryan Bell, Michael J. Lucis, Troy P. Anderson, Dennis R. Alexander, George Gogos, Jeffrey E. Shield Jan 2016

Experimental Explanation Of The Formation Mechanism Of Surface Mound-Structures By Femtosecond Laser On Polycrystalline Ni60Nb40, Edwin Peng, A. Tsubaki, Craig A. Zuhlke, Meiyu Wang, Ryan Bell, Michael J. Lucis, Troy P. Anderson, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Department of Mechanical and Materials Engineering: Faculty Publications

Femtosecond laser surface processing (FLSP) is an emerging technique for creating functionalized surfaces with specialized properties, such as broadband optical absorption or superhydrophobicity/ superhydrophilicity. It has been demonstrated in the past that FLSP can be used to form two distinct classes of mound-like, self-organized micro/nanostructures on the surfaces of various metals. Here, the formation mechanisms of below surface growth (BSG) and above surface growth (ASG) mounds on polycrystalline Ni60Nb40 are studied. Cross-sectional imaging of these mounds by focused ion beam milling and subsequent scanning electron microscopy revealed evidence of the unique formation processes for each class of …


Matl 260/360: Elements Of Materials Science—A Peer Review Of Teaching Project Benchmark Portfolio, Bai Cui Jan 2016

Matl 260/360: Elements Of Materials Science—A Peer Review Of Teaching Project Benchmark Portfolio, Bai Cui

UNL Faculty Course Portfolios

The goal of MATL 260/360 Elements of Materials Science is to make undergraduate students understand the fundamental concepts of the microstructure-property relationship of materials. This course portfolio addresses several key questions in teaching, such as how to teach new knowledge more effectively, how to increase student engagement, how to promote students’ interests and motivations, and how to use this course to improve students’ analysis and critical thinking skills.

To address each of key questions, the course activities include: relating the new knowledge with daily-life and industry examples; giving PPT slides for after- class study; assigning homework questions after each lecture; …


Field-Scale Testing And Numerical Investigation Of Soil-Boulder Interaction Under Vehicular Impact Using Fem And Coupled Fem-Sph Formulations, Lynsey Reese, Tong Qiu, Daniel Linzell, Zoltan Rado Jan 2016

Field-Scale Testing And Numerical Investigation Of Soil-Boulder Interaction Under Vehicular Impact Using Fem And Coupled Fem-Sph Formulations, Lynsey Reese, Tong Qiu, Daniel Linzell, Zoltan Rado

Department of Civil and Environmental Engineering: Faculty Publications

A computational approach that couples the Finite Element Method and the Smoothed Particle Hydrodynamics method may be advantageous for simulating the response of complex, physical systems involving large deformations. However, comparisons of this modeling technique against field-scale test data are remarkably sparse in literature. This study presents three field-scale tests involving vehicular impact into three landscape vehicular anti-ram barriers. Each barrier consisted of a single boulder embedded in compacted American Association of State Highway and Transportation Officials soil and physical testing resulted in one of the following outcomes: minimal boulder/soil movement (Test 1), moderate boulder/soil movement (Test 2), and severe …


Secondary Pool Boiling Effects, C. Kruse, A. Tsubaki, C. A. Zuhlke, T. P. Anderson, Dennis R. Alexander, George Gogos, Sidy Ndao Jan 2016

Secondary Pool Boiling Effects, C. Kruse, A. Tsubaki, C. A. Zuhlke, T. P. Anderson, Dennis R. Alexander, George Gogos, Sidy Ndao

Department of Mechanical and Materials Engineering: Faculty Publications

A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The …


Design And Commissioning Of A Community Scale Solar Powered Membrane-Based Water Purification System In Haiti, Shavin Pinto, Yung Wong, Kyle Fennesy, Yan Tang, Marc Compere Jan 2016

Design And Commissioning Of A Community Scale Solar Powered Membrane-Based Water Purification System In Haiti, Shavin Pinto, Yung Wong, Kyle Fennesy, Yan Tang, Marc Compere

Publications

This paper presents the design and commissioning of a solar powered water purification system at the Ryan Epps Home for Children (REHC) in Michaud, Haiti. This system supplies clean drinking water to the 200 children who live and go to school at REHC and also to the community in the form of a micro-business. This micro-business is the mechanism for income generation for sustainable system operation. The purifier uses a three stage filtration system with a disc-type sediment filter, a 0.1 micron ultrafiltration membrane, and an ultraviolet light for disinfection. The backwash cycle extends the life of the ultrafiltration membrane …


Portable Camera Aided Simulator (Portcas) For Minimally Invasive Surgical Training, Ka-Chun Sui, Carl Nelson, Mohsen Zahiri, Dmitry Oleynikov Jan 2016

Portable Camera Aided Simulator (Portcas) For Minimally Invasive Surgical Training, Ka-Chun Sui, Carl Nelson, Mohsen Zahiri, Dmitry Oleynikov

Department of Mechanical and Materials Engineering: Faculty Publications

The present disclosure is directed to a system and method for surgical training with low cost, reusable materials and a highly customizable virtual environment for skill-building. According to various embodiments, a surgical training tool is usable in conjunction with a support structure configured to at least partially constrain the tool movement. Meanwhile, the tool is tracked in real-time with off-tool detectors to generate a tool path driving a virtual rendering of the surgical training tool in an operative environment. The virtual rendering may be visually observable via a display device and may include a customizable and/or selectable operative environment with …


Dose Dependence Of Radiation Damage In Nano-Structured Amorphous Sioc/Crystalline Fe Composite, Qing Su, Lloyd Price, Lin Shao, Michael Nastasi Jan 2016

Dose Dependence Of Radiation Damage In Nano-Structured Amorphous Sioc/Crystalline Fe Composite, Qing Su, Lloyd Price, Lin Shao, Michael Nastasi

Department of Mechanical and Materials Engineering: Faculty Publications

Through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous FexSiyOz interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous FexSiyOz intermixed layer was observed to form at 8 dpa, but no further …


Biomimetic Substrate Control Of Cellular Mechanotransduction, Mohammad Nahid Andalib, Yuris A. Dzenis, Henry J. Donahue, Jung Yul Lim Jan 2016

Biomimetic Substrate Control Of Cellular Mechanotransduction, Mohammad Nahid Andalib, Yuris A. Dzenis, Henry J. Donahue, Jung Yul Lim

Department of Mechanical and Materials Engineering: Faculty Publications

Extracellular mechanophysical signals from both static substrate cue and dynamic mechanical loading have strong potential to regulate cell functions. Most of the studies have adopted either static or dynamic cue and shown that each cue can regulate cell adhesion, spreading, migration, proliferation, lineage commitment, and differentiation. However, there is limited information on the integrative control of cell functions by the static and dynamic mechanophysical signals. For example, a majority of dynamic loading studies have tested mechanical stimulation of cells utilizing cultures on flat surfaces without any surface modification. While these approaches have provided significant information on cell mechanotransduction, obtained outcomes …


Enhancing Stability And Efficiency Of Perovskite Solar Cells With Crosslinkable Silane-Functionalized And Doped Fullerene, Yang Bai, Qingfeng Dong, Yuchuan Shao, Yehao Deng, Qi Wang, Liang Shen, Dong Wang, Wei Wei, Jinsong Huang Jan 2016

Enhancing Stability And Efficiency Of Perovskite Solar Cells With Crosslinkable Silane-Functionalized And Doped Fullerene, Yang Bai, Qingfeng Dong, Yuchuan Shao, Yehao Deng, Qi Wang, Liang Shen, Dong Wang, Wei Wei, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p–i–n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, the …


Stabilized Wide Bandgap MapbbrXI3– X Perovskite By Enhanced Grain Size And Improved Crystallinity, Miao Hu, Cheng Bi, Yongbo Yuan, Yang Bai, Jinsong Huang Jan 2016

Stabilized Wide Bandgap MapbbrXI3– X Perovskite By Enhanced Grain Size And Improved Crystallinity, Miao Hu, Cheng Bi, Yongbo Yuan, Yang Bai, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Methylammonium lead trihalide perovskite (MAPbX3, where MA is methylammonium, and X is a halide)-based solar cells have been intensively investigated recently, with the demonstrated certified solar power conversion efficiency (PCE) exceeding 20%. To further boost the PCE to beyond the Schockley–Queisser limit, tandem structured solar cells have been investigated based on integrating MAPbX3 and low bandgap solar cells. However, the efficiency of the two-terminal integrated perovskite-silicon tandem cells is still low. The best reported efficiency of 13.7% for this type of tandem cells is far smaller than the individual cells yet, partially due to the limited performance …


Ultrahigh Sensitivity Of Methylammonium Lead Tribromide Perovskite Single Crystals To Environmental Gases, Hong-Hua Fang, Sampson Adjokatse, Haotong Wei, Jie Yang, Graeme R. Blake, Jinsong Huang, Jacky Even, Maria Antonietta Loi Jan 2016

Ultrahigh Sensitivity Of Methylammonium Lead Tribromide Perovskite Single Crystals To Environmental Gases, Hong-Hua Fang, Sampson Adjokatse, Haotong Wei, Jie Yang, Graeme R. Blake, Jinsong Huang, Jacky Even, Maria Antonietta Loi

Department of Mechanical and Materials Engineering: Faculty Publications

One of the limiting factors to high device performance in photovoltaics is the presence of surface traps. Hence, the understanding and control of carrier recombination at the surface of organic-inorganic hybrid perovskite is critical for the design and optimization of devices with this material as the active layer. We demonstrate that the surface recombination rate (or surface trap state density) inmethylammonium lead tribromide (MAPbBr3) single crystals can be fully and reversibly controlled by the physisorption of oxygen and water molecules, leading to a modulation of the photoluminescence intensity by over two orders of magnitude.We report an unusually low surface recombination …


Temperature-Dependent Helium Ion-Beam Mixing In An Amorphous Sioc/Crystalline Fe Composite, Qing Su, Lloyd Price, Lin Shao, Michael Nastasi Jan 2016

Temperature-Dependent Helium Ion-Beam Mixing In An Amorphous Sioc/Crystalline Fe Composite, Qing Su, Lloyd Price, Lin Shao, Michael Nastasi

Department of Mechanical and Materials Engineering: Faculty Publications

Temperature dependent He-irradiation-induced ion-beam mixing between amorphous silicon oxycarbide (SiOC) and crystalline Fe was examined with a transmission electron microscope (TEM) and via Rutherford backscattering spectrometry (RBS). The Fe marker layer (7.2 ± 0.8 nm) was placed in between two amorphous SiOC layers (200 nm). The amount of ion-beam mixing after 298, 473, 673, 873, and 1073 K irradiation was investigated. Both TEM and RBS results showed no ion-beam mixing between Fe and SiOC after 473 and 673 K irradiation and a very trivial amount of ion-beam mixing (~2 nm) after 298 K irradiation. At irradiation temperatures higher than 873 …


Pulsed Laser Cutting Of Magnesium-Calcium For Biodegradable Stents, M. P. Sealy, Y. B. Guo, J. F. Liu, C. Li Jan 2016

Pulsed Laser Cutting Of Magnesium-Calcium For Biodegradable Stents, M. P. Sealy, Y. B. Guo, J. F. Liu, C. Li

Department of Mechanical and Materials Engineering: Faculty Publications

There is growing interests in the use of biodegradable magnesium implants for cardiovascular and pulmonary applications such as stents. Magnesium is a metal that has the ability to gradually dissolve and absorb into the human body after implantation. There is very little work discussing the relationship between process parameters and cut quality of magnesium stents by laser cutting. The objective of this research is to determine the effect of laser cutting conditions including peak laser power and cutting speed of a millisecond range pulsed laser on kerf geometry, surface topography, surface roughness, and microstructure. An assessment on the experimental work …


Impact Of Patient Factors On Operative Duration During Laparoscopic Cholecystectomy: Evaluation From The National Surgical Quality Improvement Program Database, Bethany Rose Lowndes, Cornelius A. Thiels, Elizabeth B. Habermann, Juliane Bingener, M. Susan Hallbeck, Denny Yu Jan 2016

Impact Of Patient Factors On Operative Duration During Laparoscopic Cholecystectomy: Evaluation From The National Surgical Quality Improvement Program Database, Bethany Rose Lowndes, Cornelius A. Thiels, Elizabeth B. Habermann, Juliane Bingener, M. Susan Hallbeck, Denny Yu

Department of Mechanical and Materials Engineering: Faculty Publications

BACKGROUND: Patient factors impact laparoscopic cholecystectomy (LC) difficulty, specifically operative duration. This study quantifies the impact of patient factors on LC duration.

METHODS: The national surgery database (American College of Surgeons National Surgical Quality Improvement Program) was reviewed for all elective LC for biliary colic from 2005 to 2013. Multivariate general linear model and logistic regression were used to evaluate patient factors as predictors of operative duration greater than 60 minutes, adjusted for resident involvement and cholangiography.

RESULTS: A total of 24,099 LC met inclusion criteria. Regression analysis found procedure duration greater than 60 minutes was less likely for patients …


A Comparative Study On Machining Capabilities Of Wet And Dry Nanoscale Electro-Machining, Muhammad P. Jahan, Kamlakar P. Rajurkar, Ajay P. Malshe Jan 2016

A Comparative Study On Machining Capabilities Of Wet And Dry Nanoscale Electro-Machining, Muhammad P. Jahan, Kamlakar P. Rajurkar, Ajay P. Malshe

Department of Mechanical and Materials Engineering: Faculty Publications

Presently, the nano scale electro-machining (nano-EM) process has been demonstrated in both the liquid and air dielectric mediums, which are known as wet and dry nano-EM respectively. In the current study, two important aspects of the nano-EM have been investigated: the minimum possible feature dimension and mass fabrication capability of nano-EM. Firstly, the investigation has been done on the capability of machining graphene at atomic scale with focus on obtaining smallest possible nano-feature using the wet nano-EM. Secondly, the ability of the nano-EM process for the fabrication of arrays of nano-holes has been investigated using dry nano-EM. It was found …


Integration Of Flow Studies For Robust Selection Of Mechanoresponsive Genes, Nataly Maimari, Ryan M. Pedrigi, Alessandra Russo, Krysia Broda, Rob Krams Jan 2016

Integration Of Flow Studies For Robust Selection Of Mechanoresponsive Genes, Nataly Maimari, Ryan M. Pedrigi, Alessandra Russo, Krysia Broda, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

Blood flow is an essential contributor to plaque growth, composition and initiation. It is sensed by endothelial cells, which react to blood flow by expressing >1000 genes. The sheer number of genes implies that one needs genomic techniques to unravel their response in disease. Individual genomic studies have been performed but lack sufficient power to identify subtle changes in gene expression. In this study, we investigated whether a systematic meta-analysis of available microarray studies can improve their consistency.

We identified 17 studies using microarrays, of which 6 were performed in vivo and 11 in vitro. The in vivo studies were …


Floating-Gate Transistor Photodetector With Light Absorbing Layer, Jinsong Huang, Yongbo Yuan Jan 2016

Floating-Gate Transistor Photodetector With Light Absorbing Layer, Jinsong Huang, Yongbo Yuan

Department of Mechanical and Materials Engineering: Faculty Publications

A field effect transistor photodetector that can operate in room temperature includes a source electrode, a drain electrode, a channel to allow an electric current to flow between the drain and source electrodes, and a gate electrode to receive a bias voltage for controlling the current in the channel. The photodetector includes a light-absorbing material that absorbs light and traps electric charges. The light-absorbing material is configured to generate one or more charges upon absorbing light having a wavelength within a specified range and to hold the one or more charges. The one or more charges held in the light-absorbing …


Graphene Platform For Neural Regenerative Medicine, Tasneem Bouzid, Alexander Sinitskii, Jung Yul Lim Jan 2016

Graphene Platform For Neural Regenerative Medicine, Tasneem Bouzid, Alexander Sinitskii, Jung Yul Lim

Department of Mechanical and Materials Engineering: Faculty Publications

Graphene is a material composed of a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice. The unique electrical, optical, thermal, and mechanical properties of graphene are extensively exploited for various applications in electronics, energy, and sensors. Studies also proposed the potential of graphene for biomedical applications. The intrinsic characteristics of graphene and its availability for chemical and physical modifications make graphene a promising vehicle for various biomedical applications including drug delivery, bioimaging, disease diagnostics, etc. The chemical structure of graphene and, in turn, its functionality, can be altered by attaching functional groups, which not only modify the …


Mode-Converted Ultrasonic Scattering In Polycrystals With Elongated Grains, Andrea P. Arguelles, Christopher M. Kube, Ping Hu, Joseph A. Turner Jan 2016

Mode-Converted Ultrasonic Scattering In Polycrystals With Elongated Grains, Andrea P. Arguelles, Christopher M. Kube, Ping Hu, Joseph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

Elastic wave scattering is used to study polycrystalline media for a wide range of applications. Received signals, which include scattering from the randomly oriented grains comprising the polycrystal, contain information from which useful microstructural parameters may often be inferred. Recently, a mode-converted diffuse ultrasonic scattering model was developed for evaluating the scattered response of a transverse wave from an incident longitudinal wave in a polycrystalline medium containing equiaxed single-phase grains with cubic elastic symmetry. In this article, that theoretical mode-converted scattering model is modified to account for grain elongation within the sample. The model shows the dependence on scattering angle …


Expanded 3d Nanofiber Scaffolds: Cell Penetration, Neovascularization, And Host Response, Jiang Jiang, Zhuoran Li, Hongjun Wang, Yue Wang, Mark A. Carlson, Matthew J. Teusink, Matthew R. Macewan, Linxia Gu, Jingwei Xie Jan 2016

Expanded 3d Nanofiber Scaffolds: Cell Penetration, Neovascularization, And Host Response, Jiang Jiang, Zhuoran Li, Hongjun Wang, Yue Wang, Mark A. Carlson, Matthew J. Teusink, Matthew R. Macewan, Linxia Gu, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Herein, a robust method to fabricate expanded nanofiber scaffolds with controlled size and thickness using a customized mold during the modified gas-foaming process is reported. The expansion of nanofiber membranes is also simulated using a computational fluid model. Expanded nanofiber scaffolds implanted subcutaneously in rats show cellular infiltration, whereas non-expanded scaffolds only have surface cellular attachment. Compared to unexpanded nanofiber scaffolds, more CD68+ and CD163+ cells are observed within expanded scaffolds at all tested time points post-implantation. More CCR7+ cells appear within expanded scaffolds at week 8 post-implantation. In addition, new blood vessels are present within the expanded scaffolds at …


Bioink Properties Before, During And After 3d Bioprinting, Katja Holzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov Jan 2016

Bioink Properties Before, During And After 3d Bioprinting, Katja Holzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov

Department of Mechanical and Materials Engineering: Faculty Publications

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration …


Influence Of Shear Stress Magnitude And Direction On Atherosclerotic Plaque Composition, Ryan M. Pedrigi, Vikram V. Mehta, Sandra M. Bovens, Zahra Mohri, Christian Bo Poulsen, Willy Gsell, Jordi L. Tremoleda, Leila Towhidi, Ranil De Silva, Enrico Petretto, Rob Krams Jan 2016

Influence Of Shear Stress Magnitude And Direction On Atherosclerotic Plaque Composition, Ryan M. Pedrigi, Vikram V. Mehta, Sandra M. Bovens, Zahra Mohri, Christian Bo Poulsen, Willy Gsell, Jordi L. Tremoleda, Leila Towhidi, Ranil De Silva, Enrico Petretto, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE−/− mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes in flow magnitude promote formation of the upstream (vulnerable) plaque, whereas altered flow direction is important for development of the downstream (stable) plaque. We instrumented ApoE−/− mice (n=7) with a cuff around the left carotid artery and imaged them with micro-CT (39.6 μm resolution) eight to nine weeks …


Comparison Between Direct And Reverse Electroporation Of Cells In Situ: A Simulation Study, Leila Towhidi, Delaram Khodadadi, Nataly Maimari, Ryan M. Pedrigi, Henry Ip, Zoltan Kis, Brenda R. Kwak, Tatiana W. Petrova, Mauro Delorenzi, Rob Krams Jan 2016

Comparison Between Direct And Reverse Electroporation Of Cells In Situ: A Simulation Study, Leila Towhidi, Delaram Khodadadi, Nataly Maimari, Ryan M. Pedrigi, Henry Ip, Zoltan Kis, Brenda R. Kwak, Tatiana W. Petrova, Mauro Delorenzi, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

The discovery of the human genome has unveiled new fields of genomics, transcriptomics, and proteomics, which has produced paradigm shifts on how to study disease mechanisms, wherein a current central focus is the understanding of how gene signatures and gene networks interact within cells. These gene function studies require manipulating genes either through activation or inhibition, which can be achieved by temporarily permeabilizing the cell membrane through transfection to deliver cDNA or RNAi. An efficient transfection technique is electroporation, which applies an optimized electric pulse to permeabilize the cells of interest. When the molecules are applied on top of seeded …


In Situ Microscopy Of The Self-Assembly Of Branched Nanocrystals In Solution, Eli Sutter, Peter Sutter, Alexei V. Tkachenko, Roman Krahne, Joost De Graaf, Milena Arciniegas, Liberato Manna Jan 2016

In Situ Microscopy Of The Self-Assembly Of Branched Nanocrystals In Solution, Eli Sutter, Peter Sutter, Alexei V. Tkachenko, Roman Krahne, Joost De Graaf, Milena Arciniegas, Liberato Manna

Department of Mechanical and Materials Engineering: Faculty Publications

Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the …


Propagation Of Extensional Waves In A Piezoelectric Semiconductor Rod, C.L. Zhang, X. Y. Wang, W. Q. Chen, J. S. Yang Jan 2016

Propagation Of Extensional Waves In A Piezoelectric Semiconductor Rod, C.L. Zhang, X. Y. Wang, W. Q. Chen, J. S. Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We studied the propagation of extensional waves in a thin piezoelectric semiconductor rod of ZnO whose c-axis is along the axis of the rod. The macroscopic theory of piezoelectric semiconductors was used which consists of the coupled equations of piezoelectricity and the conservation of charge. The problem is nonlinear because the drift current is the product of the unknown electric field and the unknown carrier density. A perturbation procedure was used which resulted in two one-way coupled linear problems of piezoelectricity and the conservation of charge, respectively. The acoustic wave and the accompanying electric field were obtained from the equations …


Quantitative Assessment Of Secondary Flows Of Single-Phase Fluid Through Pipe Bends, Z. Kaldy, O. Ayala Jan 2016

Quantitative Assessment Of Secondary Flows Of Single-Phase Fluid Through Pipe Bends, Z. Kaldy, O. Ayala

Engineering Technology Faculty Publications

Single-phase fluid flow was simulated passing through various three dimensional pipe elbows. The simulations varied by Reynolds number, curvature ratios, and sweep angles and were all conducted using the k-e model available in COMSOL Multiphysics 5.1. The intent of this research was to qualitatively assess the flow characteristics under several different conditions. Many similarities were seen especially when comparing curvature ratios, the vorticity location for the turbulent cases show near identical behavior at the elbow midsection. One of the variables quantified in this paper is the maximum secondary velocity module which shows increasing values until the midsection of the elbow.


Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala Jan 2016

Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala

Engineering Technology Faculty Publications

A simulated study of oil and water in 90 degree bend was carried on COMSOL 5.1 to characterize flow pattern and analyze the secondary flow. The Euler-Euler k-e Reynolds Averaged Navier-Stokes model was used to represent the fluid motion. Changes in the Reynolds number, curvature ratio and direction of gravity were made to evaluate the effects in the intensity of the secondary flow. In the end, it was possible to see that the bend direction does not affect the formation of secondary flow for Reynolds above 100,000. It appears that the fluid behavior on the pipe bend is strongly related …