Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2018

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 73

Full-Text Articles in Engineering Science and Materials

Simplified Approach For Structural Evaluation Of Flexible Pavements At The Network Level, Mena Souliman, Stefan Romanoschi, Samer Dessouky Dec 2018

Simplified Approach For Structural Evaluation Of Flexible Pavements At The Network Level, Mena Souliman, Stefan Romanoschi, Samer Dessouky

Publications

Currently, there are few available simple procedures to identify structurally weak pavement sections utilizing Falling Weight Deflectometer (FWD) data at the network level (e.g., city, state or province). A simple method is required to determine the structural condition of pavement sections that can be directly implemented and automated in current pavement databases. The objective of this research study is to develop a simple analysis method to determine the structural condition of pavement sections utilizing the currently available non-destructive testing (NDT) deflection measurement devices at the network level that can be directly implemented and automated in the database of a typical …


Me-Em Enewsbrief, December 2018, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Dec 2018

Me-Em Enewsbrief, December 2018, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


System And Methods For Ventilation Through A Body Cavity, Mark A. Borden, Benjamin S. Terry Nov 2018

System And Methods For Ventilation Through A Body Cavity, Mark A. Borden, Benjamin S. Terry

Department of Mechanical and Materials Engineering: Faculty Publications

A system and methods for the delivery of oxygen through a body cavity of a subject using oxygen microbubbles . Through circulation of oxygen microbubbles through the body cavity , oxygen and carbon dioxide exchange may occur . Overall improvement in extending survival rate time during emergency situations caused by pulmonary or similar oxygen - intake restricting injury and / or failure may be achieved through use of the invented system and methods .


Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker Oct 2018

Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker

Michigan Tech Publications

Reliability is a key consideration when microgrid technology is implemented in military applications. Droop control provides a simple option without requiring communication between microgrid components, increasing the control system reliability. However, traditional droop control does not allow the microgrid to utilize much of the power available from a solar resource. This paper applies an optimal multidimensional droop control strategy for a solar resource connected in a microgrid at a military patrol base. Simulation and hardware-in-the-loop experiments of a sample microgrid show that much more power from the solar resource can be utilized, while maintaining the system’s bus voltage around a …


Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman Oct 2018

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman

Chemistry Faculty Publications

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic …


Hemodynamics And Pathology Of An Enlarging Abdominal Aortic Aneurysm Model In Rabbits, Hongmei Chen, Yonghua Bi, Siyeong Yu, Linxia Gu, Xiaoyan Zhu, Xinwei Han Oct 2018

Hemodynamics And Pathology Of An Enlarging Abdominal Aortic Aneurysm Model In Rabbits, Hongmei Chen, Yonghua Bi, Siyeong Yu, Linxia Gu, Xiaoyan Zhu, Xinwei Han

Department of Mechanical and Materials Engineering: Faculty Publications

Hemodynamics may play an essential role in the initiation and progression of abdominal aortic aneurysm (AAA). We aimed to study the mechanism of self-healing process by the changes of hemodynamics and pathology in an enlarging AAA in rabbits. Seventy-two rabbits were randomly divided into three groups. Rabbits underwent extrinsic coarctation and received a 10-minute elastase incubation in Group A and Group B. Absorbable suture used in Group A was terminated by balloon dilation at week 4. Diameter was measured after 1, 3, 5, and 15 weeks, computational fluid dynamics analysis was performed at week 3 and week 15. Rabbits were …


Techniques To Stimulate And Interrogate Cell–Cell Adhesion Mechanics, Ruiguo Yang, Joshua A. Broussard, Kathleen J. Green, Horacio D. Espinosa Oct 2018

Techniques To Stimulate And Interrogate Cell–Cell Adhesion Mechanics, Ruiguo Yang, Joshua A. Broussard, Kathleen J. Green, Horacio D. Espinosa

Department of Mechanical and Materials Engineering: Faculty Publications

Cell–cell adhesions maintain the mechanical integrity of multicellular tissues and have recently been found to act as mechanotransducers, translating mechanical cues into biochemical signals. Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate attachment. These studies leverage technical advances in devices and systems interfacing with living cells through cell–extracellular matrix adhesions. As reports of aberrant signal transduction originating from mutations in cell–cell adhesion molecules are being increasingly associated with disease states, growing attention is being paid to this intercellular signaling hub. Along with this renewed focus, new requirements arise for the interrogation and stimulation of cell–cell adhesive junctions. …


Modeling Sulfate Attack In Modern Concrete For Building Sustainable And Resilient Infrastructure, Zachary Grasley Oct 2018

Modeling Sulfate Attack In Modern Concrete For Building Sustainable And Resilient Infrastructure, Zachary Grasley

Publications

External sulfate attack is a complex phenomenon and is manifested in the form of large expansion, cracking, and spalling depending on the exposure solution and material constituent properties. Several models were developed in the past to demonstrate sulfate attack mechanisms that account for the diffusion of sulfate ions into the porous concrete and the successive deformation triggered by the chemical reaction and precipitation of expansive agents. However, none of these models accounts for the effect of the migration of solvent water from the low solute concentration solution to high solute concentration solution driven by the osmotic pressure. Osmotic pressure is …


Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich Oct 2018

Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich

Physics Faculty Publications

Proliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size. However, the stability of driven topological defects remains largely unexplored. Here we address this issue and investigate numerically …


Strong And Tough Continuous Nanofibers, Yuris Dzenis Sep 2018

Strong And Tough Continuous Nanofibers, Yuris Dzenis

Department of Mechanical and Materials Engineering: Faculty Publications

Amethod of fabricating a continuous nanofiber is described . The method includes preparing a solution of one or more polymers and one or more solvents and electrospinning the solution by discharging the solution through one or more liquid jets into an electric field to yield one or more continuous nanofibers . The electrospinning process ( i ) highly orients one or more polymer chains in the one or more continuous nanofibers along a fiber axis of the one or more continuous nanofibers , and ( ii ) suppresses polymer crystallization in the one or more continuous nanofibers . The one …


Me-Em Enewsbrief, September 2018, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Sep 2018

Me-Em Enewsbrief, September 2018, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Measuring Solid–Liquid Interfacial Energy Fields: Diffusion-Limited Patterns, Martin E. Glicksman Aug 2018

Measuring Solid–Liquid Interfacial Energy Fields: Diffusion-Limited Patterns, Martin E. Glicksman

Mechanical and Civil Engineering Faculty Publications

The Leibniz–Reynolds transport theorem yields an omnimetric interface energy balance, i.e., one valid over all continuum length scales. The transport theorem, moreover, indicates that solid–liquid interfaces support capillary-mediated redistributions of energy capable of modulating an interface’s motion—a thermodynamic phenomenon not captured by Stefan balances that exclude capillarity. Capillary energy fields affect interfacial dynamics on scales from about 10 nm to several mm. These mesoscopic fields were studied using entropy density multiphase-field simulations. Energy rate distributions were exposed and measured by simulating equilibrated solid–liquid interfaces configured as stationary grain boundary grooves (GBGs). Negative rates of energy distributed over GBGs were measured …


Pnnl Dark Matter Bubble Chamber, Ryan Robinson Aug 2018

Pnnl Dark Matter Bubble Chamber, Ryan Robinson

STAR Program Research Presentations

The Pacific Northwest National Laboratory (PNNL) prototype bubble chamber is intended to address issues encountered with the current PICO dark matter search detectors and improve the functionality of future experimental designs. The PNNL bubble chamber accomplishes this with a simplified interface between the hydraulic pressure controls and the target vessel and altering the standard chamber design such that it can be easily exchanged and replaced with vessels of various sizes and materials for testing purposes. The chamber itself is a glass vessel which houses perfluorobutane and holds the target fluid above room temperature and atmospheric pressure. The target fluid becomes …


Full Field Computing For Elastic Pulse Dispersion In Inhomogeneous Bars, A. Berezovski, R. Kolman, M. Berezovski, D. Gabriel, V. Adamek Jul 2018

Full Field Computing For Elastic Pulse Dispersion In Inhomogeneous Bars, A. Berezovski, R. Kolman, M. Berezovski, D. Gabriel, V. Adamek

Publications

In the paper, the finite element method and the finite volume method are used in parallel for the simulation of a pulse propagation in periodically layered composites beyond the validity of homogenization methods. The direct numerical integration of a pulse propagation demonstrates dispersion effects and dynamic stress redistribution in physical space on example of a one-dimensional layered bar. Results of numerical simulations are compared with analytical solution constructed specifically for the considered problem. Analytical solution as well as numerical computations show the strong influence of the composition of constituents on the dispersion of a pulse in a heterogeneous bar and …


Tunable Plasmonic Resonances In Highly Porous Nano-Bamboo Si-Au Superlattice-Type Thin Films, Ufuk Kılıç, Alyssa Mock, René Feder, Derek Sekora, Matthew J. Hilfiker, Rafal Korlacki, Eva Schubert, Christos Argyropoulos, Mathias Schubert Jul 2018

Tunable Plasmonic Resonances In Highly Porous Nano-Bamboo Si-Au Superlattice-Type Thin Films, Ufuk Kılıç, Alyssa Mock, René Feder, Derek Sekora, Matthew J. Hilfiker, Rafal Korlacki, Eva Schubert, Christos Argyropoulos, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

We report on fabrication of spatially-coherent columnar plasmonic nanostructure superlattice-type thin films with high porosity and strong optical anisotropy using glancing angle deposition. Subsequent and repeated depositions of silicon and gold lead to nanometer-dimension subcolumns with controlled lengths. The superlattice-type columns resemble bamboo structures where smaller column sections of gold form junctions sandwiched between larger silicon column sections (“nano-bamboo”). We perform generalized spectroscopic ellipsometry measurements and finite element method computations to elucidate the strongly anisotropic optical properties of the highly-porous nano-bamboo structures. The occurrence of a strongly localized plasmonic mode with displacement pattern reminiscent of a dark quadrupole mode is …


Near-Field Heat Transfer Enabled Nanothermomechanical Memory And Logic Devices, Sidy Ndao, Mahmoud Elzouka Jul 2018

Near-Field Heat Transfer Enabled Nanothermomechanical Memory And Logic Devices, Sidy Ndao, Mahmoud Elzouka

Department of Mechanical and Materials Engineering: Faculty Publications

A thermomechanical memory / logic device is disclosed . In embodiments , the thermomechanical device includes a first thermally controlled terminal ( e . g . , hot terminal ) ; a second thermally controlled terminal ( e . g . , cool terminal / base ) ; a stem or other structure that can be thermally expanded connected to the cool terminal ; and a thermal conductive head coupled to the stem . The head can exchange heat with the hot terminal . The stem and head are between the first thermally controlled terminal and the second thermally controlled …


Artificial Neural Network And Finite Element Modeling Of Nanoindentation Tests On Silica, Kianoosh Koocheki Jul 2018

Artificial Neural Network And Finite Element Modeling Of Nanoindentation Tests On Silica, Kianoosh Koocheki

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Two major forms of Silica include the crystalline form named Quartz which consist of the sand grains in nature, and amorphous form named Silica Glass or Fused Silica which is commonly known as glass. Fused Silica is an amorphous crystal that can show plastic behavior at micro-scale despite its brittle behavior in large scales. Due to the amorphous and ductile nature of Fused Silica, this behavior may not be explained well using the traditional dislocation-based mechanism of plasticity for crystalline solids. The crystal plasticity happens due to shear stress and stored energy in the material as dislocations which does not …


Smart Bandage For Monitoring And Treatment Of Chronic Wounds, Pooria Mostafalu, Ali Tamayol, Rahim Rahimi, Manuel Ochoa, Akbar Khalilpour, Gita Kiaee, Iman K. Yazdi, Sara Bagherifard, Mehmet R. Dokmeci, Babak Ziaie, Sameer R. Sonkusale, Ali Khademhosseini Jul 2018

Smart Bandage For Monitoring And Treatment Of Chronic Wounds, Pooria Mostafalu, Ali Tamayol, Rahim Rahimi, Manuel Ochoa, Akbar Khalilpour, Gita Kiaee, Iman K. Yazdi, Sara Bagherifard, Mehmet R. Dokmeci, Babak Ziaie, Sameer R. Sonkusale, Ali Khademhosseini

Department of Mechanical and Materials Engineering: Faculty Publications

Chronic wounds are a major health concern and they affect the lives of more than 25 million people in the United States. They are susceptible to infection and are the leading cause of nontraumatic limb amputations worldwide. The wound environment is dynamic, but their healing rate can be enhanced by administration of therapies at the right time. This approach requires real-time monitoring of the wound environment with on-demand drug delivery in a closed-loop manner. In this paper, a smart and automated flexible wound dressing with temperature and pH sensors integrated onto flexible bandages that monitor wound status in real-time to …


Prevascularization Of 3d Printed Bone Scaffolds By Bioactive Hydrogels And Cell Co-Culture, Mitchell Kuss, Shaohua Wu, Ying Wang, Jason B. Untrauer, Wenlong Li, Jung Yul Lim, Bin Duan Jul 2018

Prevascularization Of 3d Printed Bone Scaffolds By Bioactive Hydrogels And Cell Co-Culture, Mitchell Kuss, Shaohua Wu, Ying Wang, Jason B. Untrauer, Wenlong Li, Jung Yul Lim, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated …


Properties Of Matter, Mike Jackson, Holly Haney Jul 2018

Properties Of Matter, Mike Jackson, Holly Haney

High School Lesson Plans

Students will investigate the relationship(s) between thermal and electrical properties of matter. First, students will use a multimeter and temperature probe to investigate the relationship between electrical resistance and temperature of an electrical resistor composed of metals. They will then graph collected data to analyze the relationship and draw a conclusion as to their relationship. They will then perform the same investigation on a thermal resistor made of a semiconducting substance and analyze that collected data. Finally, using ClaimEvidence-Reasoning (CER) structure, students will use their experimental evidence to state the similarities and differences between the electro-thermal properties of metals and …


Interface Structure And Deformation Mechanisms Of Mg/Nb Multilayers, Xinyan Xie Jul 2018

Interface Structure And Deformation Mechanisms Of Mg/Nb Multilayers, Xinyan Xie

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Magnesium (Mg) and its alloys, as the lightest structural materials, are very attractive for a range of weight sensitive applications, such as aircraft engine, transportation industry and so on. However, their further applications are limited due to the weak properties, such as the low strength and poor ductility. In recent years, advanced techniques aiming at the modification of the microstructures, have been developed to promote the properties of Mg and its alloys, such as modifying the texture, refining the grain size, forming the intermetallic phase, and introducing the interfaces or stacking faults into the systems. Constructing Mg/Nb multilayers, which introduces …


Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu Jun 2018

Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Objective: Stenting is one of the major treatments for malignant esophageal cancer. However, stent migration compromises clinical outcomes. A flared end design of the stent diminishes its migration. The goal of this work is to quantitatively characterize stent migration to develop new strategies for better clinical outcomes.

Methods: An esophageal stent with flared ends and a straight counterpart were virtually deployed in an esophagus with asymmetric stricture using the finite element method. The resulted esophagus shape, wall stress, and migration resistance force of the stent were quantified and compared.

Results: The lumen gain for both the flared stent and the …


Me-Em Enewsbrief, June 2018, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Jun 2018

Me-Em Enewsbrief, June 2018, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Direct Synthesis Of Graphene On Niobium And Niobium Nitride, Robin Ekeya, Otto Zietz May 2018

Direct Synthesis Of Graphene On Niobium And Niobium Nitride, Robin Ekeya, Otto Zietz

Undergraduate Research & Mentoring Program

Since its isolation by mechanical exfoliation in 2004, graphene has attracted enormous interest from the scientific community not the least because of its unique physical and electronic properties. Among these, graphene’s ballistic electron transport and proximity induced superconductivity make graphene-superconductor (GS) hybrid structures a scientifically promising area.


System And Method For Controlling Operations Of Air - Conditioning System, Mouhacine Benosman, Petros Boufounos, Boris Kramer, Piyush Grover May 2018

System And Method For Controlling Operations Of Air - Conditioning System, Mouhacine Benosman, Petros Boufounos, Boris Kramer, Piyush Grover

Department of Mechanical and Materials Engineering: Faculty Publications

A method controls an operation of an air - conditioning system generating airflow in a conditioned environment . The method updates a model of airflow dynamics connecting values of flow and temperature of air conditioned during the operation of the air - conditioning system . The model is updated interactively iteratively to reduce an error between values of the airflow determined according to the model and values of the airflow measured during the operation . Next , the method models the airflow using the updated model and controls the operation of the air - conditioning system using the model .


Concomitant Crystallization In Propylene/Ethylene Random Copolymer With Strong Flow At Elevated Temperatures, Lirong Zheng, Lucia Fernandez-Ballester, Gerrit W. M. Peters, Zhe Ma May 2018

Concomitant Crystallization In Propylene/Ethylene Random Copolymer With Strong Flow At Elevated Temperatures, Lirong Zheng, Lucia Fernandez-Ballester, Gerrit W. M. Peters, Zhe Ma

Department of Mechanical and Materials Engineering: Faculty Publications

Flow-induced crystallization of α- and γ-phases was studied for a propylene/ethylene random copolymer with 3.4 mol % ethylene at two high temperatures of 132 and 142 °C by combining a pressure-driven slit flow device with real-time synchrotron wide-angle X-ray diffraction. At 132 °C, it was found that both α- and γ-phases were generated at shear stresses ranging from 0.091 to 0.110 MPa and that the γ-phase always appeared later than the α-phase. However, for 142 °C and the same stresses, only the α-phase formed. Only upon cooling the partially crystallized copolymer did the γ-phase emerge. The lack of γ-crystals obtained …


Critical-Point Model Dielectric Function Analysis Of Wo3 Thin Films Deposited By Atomic Layer Deposition Techniques, Ufuk Kılıç, Derek Sekora, Alyssa Mock, Rafał Korlacki, Elena M. Echeverría, Natale J. Ianno, Eva Schubert, Mathias Schubert May 2018

Critical-Point Model Dielectric Function Analysis Of Wo3 Thin Films Deposited By Atomic Layer Deposition Techniques, Ufuk Kılıç, Derek Sekora, Alyssa Mock, Rafał Korlacki, Elena M. Echeverría, Natale J. Ianno, Eva Schubert, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

WO3 thin films were grown by atomic layer deposition and spectroscopic ellipsometry data gathered in the photon energy range of 0.72-8.5 eV and from multiple samples was utilized to determine the frequency dependent complex-valued isotropic dielectric function for WO3. We employ a critical-point model dielectric function analysis and determine a parameterized set of oscillators and compare the observed critical-point contributions with the vertical transition energy distribution found within the band structure of WO3 calculated by density functional theory. We investigate surface roughness with atomic force microscopy and compare to ellipsometric determined effective roughness layer thickness.


In Situ Defect Detection Using Three Color Spectroscopy In Laser Powder Bed Additive Manufacturing, Andrew Drieling Apr 2018

In Situ Defect Detection Using Three Color Spectroscopy In Laser Powder Bed Additive Manufacturing, Andrew Drieling

The University Honors Program

Additive Manufacturing (AM) provides a way to create parts that would be extremely difficult or impossible with conventional manufacturing processes. However, AM also introduces defects, which are detrimental to the mechanical performance. These defects are potentially unknown until post-processing inspection and testing, wasting time and resources on an unusable part or initiating unexpected failure. Historically, spectroscopy has successfully been used for in situ monitoring of laser welding, using changing parameters in the generated plume to predict defects. In situ monitoring using a visible spectrometer for fabrication of Alloy 718 on a test bed laser powder bed fusion system is performed. …


Rare Earth - Free Permanent Magnetic Material, Laura H. Lewis, Jeffrey E. Shield, Katayun Barmak Viziri Apr 2018

Rare Earth - Free Permanent Magnetic Material, Laura H. Lewis, Jeffrey E. Shield, Katayun Barmak Viziri

Department of Mechanical and Materials Engineering: Faculty Publications

The invention provides rare earth - free permanent magnetic materials and methods of making them . The materials can be used to produce magnetic structures for use in a wide variety of commercial applications , such as motors , generators , and other electromechanical and electronic devices . Magnets fabricated using the materials can be substituted for magnets requiring rare earth elements that are costly and in limited supply . The invention provides two different types of magnetic materials . The first type is based on an iron - nickel alloy that is doped with one or more doping elements …


Method Of Fabricating A Continuous Nanofiber, Yuris Dzenis Apr 2018

Method Of Fabricating A Continuous Nanofiber, Yuris Dzenis

Department of Mechanical and Materials Engineering: Faculty Publications

A method of fabricating a continuous nanofiber is described . The method includes preparing a solution of one or more polymers and one or more solvents and electrospinning the solution by discharging the solution through one or more liquid jets into an electric field to yield one or more continuous nanofibers . The electrospinning process ( i ) highly orients one or more polymer chains in the one or more continuous nanofibers along a fiber axis of the one or more continuous nanofibers , and ( ii ) suppresses polymer crystallization in the one or more continuous nanofibers . The …