Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Zeljko J Kamberovic

Alumina

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering Science and Materials

Determination Of Al2o3 Particle Size In Cu-Al2o3 Nanocomposite Materials Using Uv Spectrophotometry, Zeljko J. Kamberovic Jan 2008

Determination Of Al2o3 Particle Size In Cu-Al2o3 Nanocomposite Materials Using Uv Spectrophotometry, Zeljko J. Kamberovic

Zeljko J Kamberovic

In order to achieve improved mechanical properties of dispersion strengthened nanocomposite, without influencing electrical and thermal conductivity it is necessary for dispersoide to be nano sized and uniformly distributed in base metal matrix. In this paper are presented the results concerning possibility of using UV spectrophotometry for determination of alumina particle size in Cu-Al2O3 system. Presented results show that this method is unefficient as method for determination of dispersoide particle size, due to the coalescence of particles false results are obtained, i.e. particle size significantly higher then one determined by image analysis.


Sintering Of Cu–Al2o3 Nano-Composite Powders Produced By A Thermochemical Route, Zeljko J. Kamberovic Jan 2007

Sintering Of Cu–Al2o3 Nano-Composite Powders Produced By A Thermochemical Route, Zeljko J. Kamberovic

Zeljko J Kamberovic

This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM) coupled with energy dispersive spectroscopy (EDS), differenttial thermal and thermogravimetric (DTA–TGA) analysis and X-ray diffraction (XRD) analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by …


Synthesis And Sintering Of Cu-Al2o3 Nanocomposite Powders Produced By A Thermochemical Route, Zeljko J. Kamberovic Jan 2007

Synthesis And Sintering Of Cu-Al2o3 Nanocomposite Powders Produced By A Thermochemical Route, Zeljko J. Kamberovic

Zeljko J Kamberovic

By hydrometallurgy and powder metallurgy along with prognosis of physical- chemical properties, a synthesis of new improved materials can be successfully performed with in advance pre-set properties which is conditioned by a quality of starting powders i.e. by improving their structure. In accordance with that, this paper presents synthesis of the nanocomposite Cu-Al2O3 powder by thermochemical method and sintering with a comparative analysis of the mechanical and electrical properties of obtained solid samples. Nanocrystaline Cu-Al2O3 powders were produced by thermochemical method through following stages: spray-drying, oxidation of precursor powder, reduction by hydrogen and homogenisation. Characterization of powders included differential-thermal and …


The Synthesis Of Ultrafine And Nanocomposite Powders Based On Copper, Silver And Alumina, Zeljko J. Kamberovic Jan 2006

The Synthesis Of Ultrafine And Nanocomposite Powders Based On Copper, Silver And Alumina, Zeljko J. Kamberovic

Zeljko J Kamberovic

Contemporary materials with predetermined properties can be successfully synthesized by utilising the principles of hydrometallurgy and powder metallurgy. The results of developing a new procedure for the synthesis of ultrafine and nanocomposite powders based on copper, silver and alumina are presented in this paper. A two-component nanocomposite powder, Cu-Al2O3, was synthesized by a thermochemical procedure, by deposition from an aqueous solution of soluble metal salts, Cu(NO3)2 and Al(NO3)3. A three-component Cu-Ag-Al2O3 powder was produced by mechanically alloying nanocomposite Cu-Al2O3 powder and Cu-Ag powder, synthesized by the thermochemical procedure. The produced powders were characterized by determining the particle specific area, pouring …