Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering Science and Materials

Path Integral Quantum Monte Carlo Study Of Coupling And Proximity Effects In Superfluid Helium-4, Max Graves Jan 2014

Path Integral Quantum Monte Carlo Study Of Coupling And Proximity Effects In Superfluid Helium-4, Max Graves

Graduate College Dissertations and Theses

When bulk helium-4 is cooled below T = 2.18 K, it undergoes a phase transition to a superfluid, characterized by a complex wave function with a macroscopic phase and exhibits inviscid, quantized flow. The macroscopic phase coherence can be probed in a container filled with helium-4, by reducing one or more of its dimensions until they are smaller than the coherence length, the spatial distance over which order propagates. As this dimensional reduction occurs, enhanced thermal and quantum fluctuations push the transition to the superfluid state to lower temperatures. However, this trend can be countered via the proximity effect, where …


Electron Correlation Effects In Strained Dual-Layer Graphene Systems, Peter Karl Harnish Jan 2014

Electron Correlation Effects In Strained Dual-Layer Graphene Systems, Peter Karl Harnish

Graduate College Dissertations and Theses

In low dimensional systems, electron correlation effects can often be enhanced. This can be vital since these effects not only play an important role in the study of many-electron physics, but are also useful in designing new materials for various applications. Since its isolation from graphite in 2004, graphene, a two dimensional sheet of carbon atoms, has drawn considerable interest due to its remarkable properties. In the past few years, research has moved on from single to bi-, dual- and multi-layer graphene systems, each displaying their own multitudes of intriguing properties. In particular, multi-layer systems that are electronically decoupled, but …


Surface Gas Permeability Of Porous Building Materials: Measurement, Analysis And Applications, David Klein Weibust Grover Jan 2014

Surface Gas Permeability Of Porous Building Materials: Measurement, Analysis And Applications, David Klein Weibust Grover

Graduate College Dissertations and Theses

In many events affecting our civil infrastructure, such as contamination or weathering, it is likely that only the surfaces of the affected building materials will be available for non-destructive measurements. In this work, we describe and analyze surface gas permeability measurements on a variety of natural and engineered building materials using two types of relatively new, non-destructive surface permeameters. It is shown that the surface gas permeability measurements correlate well with each other and could provide rapid estimates of macroscopic gas permeability and degradation of materials due to weathering. It is hypothesized that surface permeability can be used to predict …


An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood Jan 2014

An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood

Graduate College Dissertations and Theses

The enhancement of strength of nanoscale materials such as face-centered cubic metal nanowires is well known and arises largely from processes mediated by high energy surface atoms. This leads to strong size effects in nanoscale plasticity; ,smaller is stronger. Yet, other factors, such as crystalline defects also contribute greatly to the mechanical properties. In particular, twin boundaries, which are pervasive and energetically favorable defects in face-centered cubic metal nanowires, have been shown to greatly enhance the strength, furthermore this increase in strength has been shown to be directly influenced by the twin density. However, attempts to control the …