Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering Science and Materials

The Development And Testing Of A Gyroscope-Based Neck Strengthening Rehabilitation Device, Nicole D. Devos Feb 2024

The Development And Testing Of A Gyroscope-Based Neck Strengthening Rehabilitation Device, Nicole D. Devos

Electronic Thesis and Dissertation Repository

Neck pain can be debilitating, and is experienced by the majority of people at some point over the course of their life. Resistance training has been shown to have significant improvement in pain or disability for patients. There are few options available for telerehabilitation, and the use of gyroscope stabilizers is proposed for this use. A biomechanics model of a head--neck--gyroscope system was created. In order to also model the dynamics of such a system, this work proposes a blended method using the Denavit--Hartenberg (DH) convention, popular in the field of robotics, with the Lagrangian mechanics approach to analyze an …


A Computational Fluid Dynamics-Based Surrogate Wind Turbine Blade Aerodynamic Model For Hybrid Simulation, Eric Lalonde Feb 2022

A Computational Fluid Dynamics-Based Surrogate Wind Turbine Blade Aerodynamic Model For Hybrid Simulation, Eric Lalonde

Electronic Thesis and Dissertation Repository

Hybrid simulation (HS) is a promising technique for studying wind turbines due to the presence of scaling errors in wind tunnel testing. However, HS of wind-loaded structures is limited by the current practice of using lower-accuracy, "pre-calculated" aerodynamic loads, which uncouple the aerodynamic loading from the structural response. This thesis presents six stand-alone studies that collectively build towards a novel HS framework that employs a computational fluid dynamics (CFD) based surrogate model to generate higher-accuracy aerodynamic loads within the HS loop. An experimentally-validated residential wind turbine model equipped with an external damping system was used to illustrate the proposed framework. …


Joint Wind And Ice Effects On Transmission Lines In Mountainous Terrain, Daniel Davalos Arriaga Nov 2020

Joint Wind And Ice Effects On Transmission Lines In Mountainous Terrain, Daniel Davalos Arriaga

Electronic Thesis and Dissertation Repository

Atmospheric icing on mountainous terrain can produce catastrophic damages to transmission lines when incoming particles impinge and accrete on the cable surface of the system. The first challenge in wind-ice loading is determining joint statistics of wind and ice accretion on transmission lines. This study analyzes the weather characteristics for a specific site of study using 15 years of historical data to use as inputs for ice accretion modeling. The joint wind and ice hazard is characterized by simulating 500 years of icing events from the fitted probability distributions of ice accretion and wind on ice velocities. The second challenge …


Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash Jan 2019

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash

Electronic Thesis and Dissertation Repository

The aim of the present research is to understand the bouncing dynamic behavior of NEM/MEM switches in order to improve the switch performance and reliability. It is well known that the bouncing can dramatically degrade the switch performance and life; hence, in the present study, bouncing dynamics of a cantilever-based NME/MEM switch has been studied in detail. To this end, a model of a MEM switch that incorporates electrostatic force, squeeze film air damping force as well as asperity-based contact force has been proposed for an electrostatically actuated switch. An actuation force due to piezoelectric effects is further included in …


Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou Sep 2015

Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou

Electronic Thesis and Dissertation Repository

Dielectric elastomer transducers with large deformation, high energy output, light weight and low cost have been drawing great interest from both the research and industry communities, and shown potential for versatile applications in biomimetics, dynamics, robotics and energy harvesting. However, in addition to multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, the performance of dielectric elastomer transducers are also strongly influenced by the hyperelastic and viscoelastic properties of the material. Also, the interplay among these material properties and the failure modes is rather difficult to predict. Therefore, in order to provide guidelines for the optimal design …


The Effect Of Fixation Plate Length On Spinal Instability Following Anterior Cervical Plate Fixation For The Repair Of In Vitro Flexion-Distraction Injuries, Abdulaziz J. Al-Kuwari Sep 2014

The Effect Of Fixation Plate Length On Spinal Instability Following Anterior Cervical Plate Fixation For The Repair Of In Vitro Flexion-Distraction Injuries, Abdulaziz J. Al-Kuwari

Electronic Thesis and Dissertation Repository

Abstract:

The Effect of Fixation Plate Length on Spinal Instability Following Anterior Cervical Plate Fixation for the Repair of in Vitro Flexion-Distraction Injuries

Introduction: Anterior cervical decompression and fusion with a plate (ACDFP) is a commonly performed treatment following a traumatic injury to the subaxial cervical spine. The purpose of the presented work was to determine the biomechanical effect of plate length on cervical spine kinematic stability following ACDFP stabilization for a simulated traumatic injury.

Methods: Eleven fresh-frozen cadaveric C5-C6 and C6-C7 motion segments were examined in this study. To assess kinematics, flexibility testing was performed on each specimen …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …