Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Pennsylvania

Nanophotonics

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Optomechanical Devices And Sensors Based On Plasmonic Metamaterial Absorbers, Hai Zhu Jan 2015

Optomechanical Devices And Sensors Based On Plasmonic Metamaterial Absorbers, Hai Zhu

Publicly Accessible Penn Dissertations

Surface plasmon resonance is the resonant oscillations of the free electrons at the interface between two media with different signs in real permittivities, e.g. a metal and a dielectric, stimulated by light. Plasmonics is a promising field of study, because electron oscillations inside a subwavelength space at optical frequencies simultaneously overcome the limit of diffraction in conventional photonics and carrier mobilities in semiconductor electronics. Due to the subwavelength confinement, plasmonic resonances can strongly enhance local fields and, hence, magnify light-matter interactions. Optical absorbers based on plasmonic metamaterials can absorb light resonantly at the operating wavelengths with up to 100 ...


Semiconductor Nanowires: Optical Properties And All-Optical Switching, Brian Edward Piccione Jan 2012

Semiconductor Nanowires: Optical Properties And All-Optical Switching, Brian Edward Piccione

Publicly Accessible Penn Dissertations

The optical properties of semiconductor nanowires are both important from a fundamental materials physics standpoint and necessary to understand in engineering applications: nanowire photovoltaic devices, sensors, and lasers, among others, could all benefit. Unfortunately, these optical properties are not easy to ascertain. Transmission times are short, in-coupling of white probe light is difficult, and the angle-resolved measurements typically used to determine material dispersion relations in bulk materials are hindered by diffraction effects at subwavelength nanowire end facets.

Here, we present a series of experimental techniques and theoretical models developed to study of the optical properties of active nanowire waveguides. Beginning ...