Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Primary Blast Waves Induced Brain Dynamics Influenced By Head Orientations, Yi Hua, Yugang Wang, Linxia Gu Apr 2017

Primary Blast Waves Induced Brain Dynamics Influenced By Head Orientations, Yi Hua, Yugang Wang, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

There is controversy regarding the directional dependence of head responses subjected to blast loading. The goal of this work is to characterize the role of head orientation in the mechanics of blast wave-head interactions as well as the load transmitting to the brain. A three-dimensional human head model with anatomical details was reconstructed from computed tomography images. Three different head orientations with respect to the oncoming blast wave, i.e., front-on with head facing blast, back-on with head facing away from blast, and side-on with right side exposed to blast, were considered. The reflected pressure at the blast wave-head interface positively …


Blast-Induced Mild Traumatic Brain Injury Through Ear Canal: A Finite Element Study, Praveen Akula, Yi Hua, Linxia Gu Jan 2015

Blast-Induced Mild Traumatic Brain Injury Through Ear Canal: A Finite Element Study, Praveen Akula, Yi Hua, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Purpose The role of ear canal in transmitting blast waves to the brain is not clear. The goal of this work is to characterize the influence of ear canal on blast-induced mild traumatic brain injury through a computational approach.

Methods A three-dimensional human head model with single-side ear canal details was reconstructed from computed tomography images. The ear canal was positioned either facing the incident blast wave or facing away from the blast wave.

Results The blast wave-head interaction has demonstrated that the overpressure within the ear canal was substantially amplified when the ear directly faced the blast wave. When …