Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Dose Dependence Of Radiation Damage In Nano-Structured Amorphous Sioc/Crystalline Fe Composite, Qing Su, Lloyd Price, Lin Shao, Michael Nastasi Jan 2016

Dose Dependence Of Radiation Damage In Nano-Structured Amorphous Sioc/Crystalline Fe Composite, Qing Su, Lloyd Price, Lin Shao, Michael Nastasi

Department of Mechanical and Materials Engineering: Faculty Publications

Through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous FexSiyOz interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous FexSiyOz intermixed layer was observed to form at 8 dpa, but no further …


Temperature-Dependent Helium Ion-Beam Mixing In An Amorphous Sioc/Crystalline Fe Composite, Qing Su, Lloyd Price, Lin Shao, Michael Nastasi Jan 2016

Temperature-Dependent Helium Ion-Beam Mixing In An Amorphous Sioc/Crystalline Fe Composite, Qing Su, Lloyd Price, Lin Shao, Michael Nastasi

Department of Mechanical and Materials Engineering: Faculty Publications

Temperature dependent He-irradiation-induced ion-beam mixing between amorphous silicon oxycarbide (SiOC) and crystalline Fe was examined with a transmission electron microscope (TEM) and via Rutherford backscattering spectrometry (RBS). The Fe marker layer (7.2 ± 0.8 nm) was placed in between two amorphous SiOC layers (200 nm). The amount of ion-beam mixing after 298, 473, 673, 873, and 1073 K irradiation was investigated. Both TEM and RBS results showed no ion-beam mixing between Fe and SiOC after 473 and 673 K irradiation and a very trivial amount of ion-beam mixing (~2 nm) after 298 K irradiation. At irradiation temperatures higher than 873 …