Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

Numerical Simulation Of Heat Transfer In Porous Metals For Cooling Applications, Edgar Avalos Gauna, Yuyuan Zhao Oct 2016

Numerical Simulation Of Heat Transfer In Porous Metals For Cooling Applications, Edgar Avalos Gauna, Yuyuan Zhao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Orientation Controllable Epitaxial Vapor-Liquid-Solid Semiconductor Nanowire Synthesis On Silicon Substrate, Sung Hwan Chung Jan 2013

Orientation Controllable Epitaxial Vapor-Liquid-Solid Semiconductor Nanowire Synthesis On Silicon Substrate, Sung Hwan Chung

Open Access Dissertations

Semiconductor nanowires synthesized via the vapor-liquid-solid (VLS) mechanism have attracted extensive research interest in recent years owing to their unique structure as a promising candidate for the future electronic devices. Germanium and silicon nanowires, in particular, are compatible with the current silicon-based technology via direct assembly. However, one of the main challenges for the successful nanowire application in large-scale is the lack of the method for obtaining nanowires in desired positions and directions. Therefore, the comprehensive, systematic understanding of epitaxial nanowire growth and the more suitable method to align nanowires on novel structure are required. In this work, the synthesis …


Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman Jan 2009

Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman

Birck and NCN Publications

Carbon nanotubes (CNTs) have gained increased interest in dynamic atomic force microscopy (dAFM) as sharp, flexible, conducting, nonreactive tips for high-resolution imaging, oxidation lithography, and electrostatic force microscopy. By means of theory and experiments we lay out a map of several distinct tapping mode AFM oscillation states for CNT tipped AFM cantilevers: namely, noncontact attractive regime oscillation, intermittent contact with CNT slipping or pinning, or permanent contact with the CNT in point or line contact with the surface while the cantilever oscillates with large amplitude. Each state represents fundamentally different origins of CNT-surface interactions, CNT tip-substrate dissipation, and phase contrast …