Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering Science and Materials

Hypersonic Boundary Layer Receptivity To Acoustic Disturbances Over Cones, Kursat Kara Jan 2008

Hypersonic Boundary Layer Receptivity To Acoustic Disturbances Over Cones, Kursat Kara

Mechanical & Aerospace Engineering Theses & Dissertations

The receptivity mechanisms of hypersonic boundary layers to free stream acoustic disturbances are studied using both linear stability theory (LST) and direct numerical simulations (DNS). A computational code is developed for numerical simulation of steady and unsteady hypersonic flow over cones by combining a fifth-order weighted essentially non-oscillatory (WENO) scheme with third-order total-variation-diminishing (TVD) Runge-Kutta method. Hypersonic boundary layer receptivity to free-stream acoustic disturbances in slow and fast modes over 5-degree, half-angle blunt cones and wedges are numerically investigated. The free-stream Mach number is 6.0, and the unit Reynolds number is 7.8×106/ft. Both the steady and ...


On Multifunctional Collaborative Methods In Engineering Science, Jonathan B. Ransom Sr. Apr 2001

On Multifunctional Collaborative Methods In Engineering Science, Jonathan B. Ransom Sr.

Mechanical & Aerospace Engineering Theses & Dissertations

Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity data must be assimilated rapidly into the design, analysis and simulation process. This data assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary data rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative and applicable to the general field of engineering science and mechanics.

Multifunctional methodologies ...


Large Amplitude Pitching Of Supermaneuver Delta Wings Including Flow Control, Yahia A. Abdelhamid Jul 1999

Large Amplitude Pitching Of Supermaneuver Delta Wings Including Flow Control, Yahia A. Abdelhamid

Mechanical & Aerospace Engineering Theses & Dissertations

The unsteady, three-dimensional Navier-Stokes equations are solved to simulate and study the aerodynamic response of a delta wing undergoing large amplitude pitching motion up to 90° angle of attack. The primary model under consideration consists of a 76° swept, sharp-edged delta wing of zero thickness, initially at zero angle of attack. The freestream Mach number and Reynolds number are 0.3 and 0.45 × 106, respectively. The governing equations are solved time-accurately using the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. Both laminar and turbulent flow solutions are investigated. In the laminar flow solutions, validation of the computational results is ...


Efficient Dynamic Unstructured Methods And Applications For Transonic Flows And Hypersonic Stage Separation, Xiaobing Luo Jan 1999

Efficient Dynamic Unstructured Methods And Applications For Transonic Flows And Hypersonic Stage Separation, Xiaobing Luo

Mechanical & Aerospace Engineering Theses & Dissertations

Relative-moving boundary problems have a wide variety of applications. They appear in staging during a launch process, store separation from a military aircraft, rotor-stator interaction in turbomachinery, and dynamic aeroelasticity.

The dynamic unstructured technology (DUT) is potentially a strong approach to simulate unsteady flows around relative-moving bodies, by solving time-dependent governing equations. The dual-time stepping scheme is implemented to improve its efficiency while not compromising the accuracy of solutions. The validation of the implicit scheme is performed on a pitching NACA0012 airfoil and a rectangular wing with low reduced frequencies in transonic flows. All the matured accelerating techniques, including the ...


Placement Of Piezoelectric Actuators For Active Control Of Vibration Using Modal Parameters, Xuegeng Zhu Jan 1998

Placement Of Piezoelectric Actuators For Active Control Of Vibration Using Modal Parameters, Xuegeng Zhu

Mechanical & Aerospace Engineering Theses & Dissertations

An equation is derived to model the piezoelectric actuators incorporation with flexible structures. This equation permits the comparison of the performance indices over the entire structure for a piezoelectric actuator with constant area, which is unachievable if the Finite Element Method is used for complicated structures.

An index has been developed for placement of piezoelectric actuator for control of vibration of a flexible structure. This index is derived from the definition of H2norm. Computation of the proposed index requires only the natural frequencies and corresponding mode shapes of the structures of interest. The method is well suited to large ...


Development Of Vibration And Sensitivity Analysis Capability Using The Theory Of Structural Variations, Ting-Yu Rong Jul 1994

Development Of Vibration And Sensitivity Analysis Capability Using The Theory Of Structural Variations, Ting-Yu Rong

Mechanical & Aerospace Engineering Theses & Dissertations

In the author's previous work entitled "General Theorems of Topological Variations of Elastic Structures and the Method of Topological Variation," 1985, some interesting properties of skeletal structures have been discovered. These properties have been described as five theorems and synthesized as a theory, called the theory of structural variations (TSV). Based upon this theory, an innovative analysis tool, called the structural variation method (SVM), has been derived for static analysis of skeletal structures (one-dimensional finite element systems).

The objective of this dissertation research is to extend TSV and SVM from one-dimensional finite element systems to multi-dimensional ones and from ...