Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Engineering Science and Materials

Crystal

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

Thickness-Shear Vibration Of A Rectangular Quartz Plate With Partial Electrodes, Huijing He, Jiashi Yang, John A. Kosinski, Ji Wang Apr 2013

Thickness-Shear Vibration Of A Rectangular Quartz Plate With Partial Electrodes, Huijing He, Jiashi Yang, John A. Kosinski, Ji Wang

Department of Mechanical and Materials Engineering: Faculty Publications

We study free vibration of a thickness-shear mode crystal resonator of AT-cut quartz. The resonator is a rectangular plate partially and symmetrically electroded at the center with rectangular electrodes. A single-mode, three-dimensional equation governing the thickness-shear displacement is used. A Fourier series solution is obtained. Numerical results calculated from the series show that there exist trapped thickness-shear modes whose vibration is mainly under the electrodes and decays rapidly outside the electrodes. The effects of the electrode size and thickness on the trapped modes are examined.


Analysis Of Electrically-Forced Vibrations Of Piezoelectric Mesa Resonators, Huijing He, Guo-Quan Nie, Jin-Xi Liu, Jiashi Yang Jan 2013

Analysis Of Electrically-Forced Vibrations Of Piezoelectric Mesa Resonators, Huijing He, Guo-Quan Nie, Jin-Xi Liu, Jiashi Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We study the electrically forced thickness-shear and thickness-twist vibrations of stepped thickness piezoelectric plate mesa resonators made of polarized ceramics or 6-mm class crystals. A theoretical analysis based on the theory of piezoelectricity is performed, and an analytical solution is obtained using the trigonometric series. The electrical admittance, resonant frequencies, and mode shapes are calculated, and strong energy trapping of the modes is observed. Their dependence on the geometric parameters of the resonator is also examined.


Analysis Of A Monolithic Crystal Plate Acoustic Wave Filter, Huijing He May 2011

Analysis Of A Monolithic Crystal Plate Acoustic Wave Filter, Huijing He

Department of Mechanical and Materials Engineering: Faculty Publications

We study thickness–shear and thickness–twist vibrations of a finite, monolithic, AT-cut quartz plate crystal filter with two pairs of electrodes. The equations of anisotropic elasticity are used with the omission of the small elastic constant c56 . An analytical solution is obtained using Fourier series from which the res-onant frequencies, mode shapes, and the vibration confinement due to the electrode inertia are calculated and examined.