Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Engineering Science and Materials

University of Nebraska - Lincoln

Femtosecond laser

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Micro/Nanostructures Formation By Femtosecond Laser Surface Processing On Amorphous And Polycrystalline Ni60nb40, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Meiyu Wang, Ryan Bell, Michael J. Lucis, Troy P. Anderson, Dennis R. Alexander, George Gogos, Jeffrey E. Shield Jan 2017

Micro/Nanostructures Formation By Femtosecond Laser Surface Processing On Amorphous And Polycrystalline Ni60nb40, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Meiyu Wang, Ryan Bell, Michael J. Lucis, Troy P. Anderson, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Department of Mechanical and Materials Engineering: Faculty Publications

Femtosecond laser surface processing is a technology that can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophilicity/superhydrophobicity. In this study, two unique classes of surface structures, below surface growth (BSG) and above surface growth (ASG) mounds, were formed by femtosecond laser surface processing on amorphous and polycrystalline Ni60Nb40 with two different grain sizes. Cross sectional imaging of these mounds revealed thermal evidence of the unique formation processes for each class of surface structure. BSG mounds formed on all three substrates using the same laser parameters had similar surface …


Self‑Propelled Droplets On Heated Surfaces With Angled Self‑Assembled Micro/Nanostructures, Cory Kruse, Isra Somanas, Troy Anderson, Chris Wilson, Craig Zuhlke, Dennis Alexander, George Gogos, Sidy Ndao Jan 2015

Self‑Propelled Droplets On Heated Surfaces With Angled Self‑Assembled Micro/Nanostructures, Cory Kruse, Isra Somanas, Troy Anderson, Chris Wilson, Craig Zuhlke, Dennis Alexander, George Gogos, Sidy Ndao

Department of Mechanical and Materials Engineering: Faculty Publications

Directional and ratchet-like functionalized surfaces can induce liquid transport without the use of an external force. In this paper, we investigate the motion of liquid droplets near the Leidenfrost temperature on functionalized self-assembled asymmetric microstructured surfaces. The surfaces, which have angled microstructures, display unidirectional properties. The surfaces are fabricated on stainless steel through the use of a femtosecond laser-assisted process. Through this process, mound-like microstructures are formed through a combination of material ablation, fluid flow, and material redeposition. In order to achieve the asymmetry of the microstructures, the femtosecond laser is directed at an angle with respect to the sample …