Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Numerical Modeling Of Solidification Process And Prediction Of Mechanical Properties In Magnesium Alloys, Mehdi Farrokhnejad Aug 2013

Numerical Modeling Of Solidification Process And Prediction Of Mechanical Properties In Magnesium Alloys, Mehdi Farrokhnejad

Electronic Thesis and Dissertation Repository

A formulation used to simulate the solidification process of magnesium alloys is developed based upon the volume averaged finite volume method on unstructured collocated grids. To derive equations, a non-zero volume fraction gradient has been considered and resulting additional terms are well reasoned. For discretization the most modern approximations for gradient and hessians are used and novelties outlined. Structure-properties correlations are incorporated into the in-house code and the proposed formulation is tested for a wedge-shaped magnesium alloy casting. While the results of this study show a good agreement with the experimental data, it was concluded that a better understanding of …


Influence Of Microstructure On The Propagation Of Fatigue Cracks In Inconel 617, Benjiman Michael Albiston Jul 2013

Influence Of Microstructure On The Propagation Of Fatigue Cracks In Inconel 617, Benjiman Michael Albiston

Boise State University Theses and Dissertations

Inconel 617 is a candidate material for use in the intermediate heat exchanger of the Next Generation Nuclear Plant. Because of the high temperatures and the fluctuations in stress and temperature, the fatigue behavior of the material is important to understand. The goal of this study was to determine the influences of the microstructure during fatigue crack propagation. For this investigation, Inconel 617 compact tension samples, fatigue tested by Julian Benz at the Idaho National Laboratory, were obtained. The testing conditions included two environments at 650 °C (lab air and impure-He) and varied testing parameters including: loading waveform (triangular, trapezoidal), …