Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Science and Materials

Atomistic Simulations Of Twin Facets Associated With Three-Dimensional { []011 } Twins In Magnesium, Qiyu Zeng, Mingyu Gong, Houyu Ma, Yao Shen, Jian-Feng Nie, Jian Wang, Yue Liu Jul 2023

Atomistic Simulations Of Twin Facets Associated With Three-Dimensional { []011 } Twins In Magnesium, Qiyu Zeng, Mingyu Gong, Houyu Ma, Yao Shen, Jian-Feng Nie, Jian Wang, Yue Liu

Department of Mechanical and Materials Engineering: Faculty Publications

Twinning is a deformation mechanism that creates three-dimensional (3D) twin domains through the migration of twin facets. This occurs via the nucleation and glide of twinning disconnections (TDs), which can pile up to create twin facets. A comprehensive under- standing of twin facets associated with 3D twins, including their atomic structures and energies, is crucial for understanding deformation twinning. In this study, we propose a molecular statics/dynamics (MS/MD) approach to determine characteristic twin facets enclosing 3D non-equilibrium/equilibrium { [] 011 } twin domains, which has been much less studied than the counterpart { [] 012 } twin domains. The stability …


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


Interactions Between Dislocations And Three-Dimensional Annealing Twins In Face Centered Cubic Metals, Yanxiang Liang, Xiaofang Yang, Mingyu Gong, Guisen Liu, Qing Liu, Jian Wang Mar 2019

Interactions Between Dislocations And Three-Dimensional Annealing Twins In Face Centered Cubic Metals, Yanxiang Liang, Xiaofang Yang, Mingyu Gong, Guisen Liu, Qing Liu, Jian Wang

Department of Mechanical and Materials Engineering: Faculty Publications

Annealing twins often form in metals with a face centered cubic structure during thermal and mechanical processing. Here, we conducted molecular dynamic (MD) simulations for copper and aluminum to study the interaction processes between {1 1 1}1/2 <1 1 0> dislocations and a three-dimensional annealing twin. Twin boundaries are characterized with Σ3{1 1 1} coherent twin boundaries (CTBs) and Σ3{1 1 2} incoherent twin boundaries (ITBs). MD results revealed that dislocation-ITB interactions affect slip transmission for a dislocation crossing CTBs, facilitating the nucleation of Lomer dislocation.


Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows Jul 2015

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows

Graduate Theses and Dissertations

The deleterious effects of atomic and molecular hydrogen on the mechanical properties of metals have long been observed. Although several theories exist describing the mechanisms by which hydrogen negatively influences the failure of materials, a consensus has yet to be reached regarding the exact mechanism or combination of mechanisms. Two mechanisms have gained support in explaining hydrogen’s degradative role in non-hydride forming metals: hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Yet, the interplay between these mechanisms and microstructure in metallic materials has not been explained. Accordingly, for this thesis, the three main objectives are: (i) to develop a numerical methodology to …


Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn Jan 1997

Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn

Faculty Publications

We present a new molecular-level picture of chain dynamics for describing the viscoelasticity of crosslinked polymers. The associated mathematical model consists of a time-dependent momentum balance on a representative polymer segment in the crosslinked network, plus phenomenological expressions for forces acting on the segments. These include a cohesive force that accounts for intermolecular attraction, an entropic force describing the thermodynamics governing chain conformations, and a frictional force that captures the temperature dependence of relative chain motion. We treat the case of oscillatory uniaxial deformation. Solution of the model equations in the frequency domain yields the dynamic moduli as functions of …