Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 57

Full-Text Articles in Engineering Science and Materials

Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost May 2023

Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cu(In,Ga)(S,Se)2 or CIGS is a thin-film semiconductor that has shown a device efficiency of 23.35% and 24.2% for single-junction and perovskite/CIGS tandem solar cells, respectively. CIGS offers promising properties such as tunable bandgap and ease of processing making them great candidates for thin-film tandem devices. However, knowledge of the effect of material defects, buffer materials, and post-deposition treatment (PDT) on degradation and metastability behavior in these devices is not well understood.In this dissertation, metastability and long-term degradation of CIGS thin-film solar cells have been investigated under combinatorial stress factors of heat, light, and voltage bias to systematically understand the effect …


Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris Dec 2022

Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris

UNLV Theses, Dissertations, Professional Papers, and Capstones

The nanoscale regime of materials has been at the forefront of research and interest in condensed matter physics for many years. In a merger of the fields of two-dimensional (2D) materials and high pressure physics, we present an investigation of the electronic response of carbon-based, van der Waals (vdW) heterostructures in a diamond anvil cell (DAC). Combining these fields presents us with the ability to study the characteristics of such systems both optically, and through electrical transport. Properties such as conductance, band structure, and layer number are considered. The samples in this study are assembled using exfoliation and stacking techniques …


Polyvinyl Chloride Gels: Theoretical Modeling Of Their Actuation Mechanism And Characterization Of Their Properties, Zachary Frank Dec 2021

Polyvinyl Chloride Gels: Theoretical Modeling Of Their Actuation Mechanism And Characterization Of Their Properties, Zachary Frank

UNLV Theses, Dissertations, Professional Papers, and Capstones

Polyvinyl chloride (PVC) gels are an electroactive polymer smart material which has been considered in a variety of actuator applications. Their large deformation, fast response rates, optical transparency, and soft nature has made them a key area of interest in fields ranging from soft robotics to optics. PVC gels are made from PVC mixed with large quantities of plasticizer, such as dibutyl adipate (DBA). When a voltage is applied, the gel experiences an “anodophilic” deformation (in which it moves preferentially towards the anode). This unique characteristic is the result of a charge buildup near the anode surface, which creates electromechanical …


A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen May 2021

A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Ionic polymer-metal composites (IPMC) are smart materials that exhibit large deformation in response to small applied voltages, and conversely generate detectable electrical signals in response to mechanical deformations. The study of IPMC materials is a rich field of research, and an interesting intersection of material science, electrochemistry, continuum mechanics, and thermodynamics. Due to their electromechanical and mechanoelectrical transduction capabilities, IPMCs find many applications in robotics, soft robotics, artificial muscles, and biomimetics. This study aims to investigate the dominating physical phenomena that underly the actuation and sensing behavior of IPMC materials. This analysis is made possible by developing a new, hyperelastic …


Developments Of Machine Learning Potentials For Atomistic Simulations, Howard Yanxon Dec 2020

Developments Of Machine Learning Potentials For Atomistic Simulations, Howard Yanxon

UNLV Theses, Dissertations, Professional Papers, and Capstones

Atomistic modeling methods such as molecular dynamics play important roles in investigating time-dependent physical and chemical processes at the microscopic level. In the simulations, energy and forces, sometimes including stress tensor, need to be recalculated iteratively as the atomic configuration evolves. Consequently, atomistic simulations crucially depend on the accuracy of the underlying potential energy surface. Modern quantum mechanical modeling based on density functional theory can consistently generate an accurate description of the potential energy surface. In most cases, molecular dynamics simulations based on density functional theory suffer from highly demanding computational costs. On the other hand, atomistic simulations based on …


Chemical And Electronic Surface Structure Of Chalcopyrite-Based Thin Films For Solar Water Splitting, James C. Carter May 2020

Chemical And Electronic Surface Structure Of Chalcopyrite-Based Thin Films For Solar Water Splitting, James C. Carter

UNLV Theses, Dissertations, Professional Papers, and Capstones

In recent years, various thin film solar devices have reached markedly high efficiencies on both the laboratory and large area scale. To further evaluate their potential, and help drive device optimization of efficient solar devices, a detailed understanding of the chemical and electronic structure of the surfaces and interfaces is required. It is these interfaces that play a pivotal role in dictating aspects of device performance. Chalcopyrite-based materials, such as Cu(In,Ga)S2 (CIGS) are regarded as one of the most promising absorber materials for use in highly efficient solar devices. In the context of photoelectrochemical (PEC) hydrogen generation, the tunability of …


Design Of Efficient Carbon-Based Adsorbents For The Removal Of Organic And Inorganic Water Contaminants, Sayedeh Soroosh Mortazavian Dehkordi Dec 2019

Design Of Efficient Carbon-Based Adsorbents For The Removal Of Organic And Inorganic Water Contaminants, Sayedeh Soroosh Mortazavian Dehkordi

UNLV Theses, Dissertations, Professional Papers, and Capstones

Granular activated carbon (AC) and biochar (BC) are two carbon-based adsorbents commonly used for water and wastewater treatment. However, these adsorbents have drawbacks that suppress their aqueous contaminants removal efficiency. Their major disadvantages are that AC has low selectivity and reusability potential, and BC has a hydrophobic nature.

The scope of this dissertation is to enhance the performance of commonly-used carbon-based adsorbents for the removal of organic and inorganic water contaminants and to understand the interactive mechanism of contaminants’ ions/molecules with adsorbents. Hexavalent chromium (Cr(VI)) and trichloroethylene (TCE) are two types of inorganic and organic water contaminants, respectively, which are …


Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed Dec 2019

Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed

UNLV Theses, Dissertations, Professional Papers, and Capstones

The intrinsic link between long-range order, coordination geometry, and the electronic properties of a system must be understood in order to tailor function-specific materials. Although material properties are typically tailored using chemical dopants, such methods can cause irreversible changes to the structure, limiting the range of functionality. The application of high pressure may provide an alternative “clean” method to tune the electronic properties of semiconducting materials by tailoring their defect density and structure.

We have explored a number of optoelectronic relevant materials with promising characteristics, specifically Sn-(O,N) compounds which have been predicted to undergo pressure-mediated opening of their optical band …


Equation Of State Of H2o Ice Using Melt-Recrystallization, Zachary Michael Grande May 2019

Equation Of State Of H2o Ice Using Melt-Recrystallization, Zachary Michael Grande

UNLV Theses, Dissertations, Professional Papers, and Capstones

The recent surge in exoplanet discoveries due to advancements in astrophysical technology and analysis has brought the reliability of early equation of state measurements into question as they are the limiting factor when modeling composition of these planets. H2O content is among the most important for the search of habitable planets as well as in understanding planetary dynamics and atmosphere formation. Over the last three decades the equation of state of H2O has been investigated with various techniques but, has suffered from anisotropic strain and poor powder statistics resulting in a large discrepancy in equation of state fits. At pressures …


Cesium Platinum Iodide Perovskite Synthesis, Development And Application In Photovoltaic Devices, Dakota Schwartz May 2019

Cesium Platinum Iodide Perovskite Synthesis, Development And Application In Photovoltaic Devices, Dakota Schwartz

UNLV Theses, Dissertations, Professional Papers, and Capstones

Third generation photovoltaics, including perovskites, are essential to improving solar technology for widespread future use. Perovskite solar cells have surpassed 23.7% power conversion efficiency, comparable to traditional silicon photovoltaic panels. However, these perovskites are fabricated using lead-based compounds, posing toxicity issues. Furthermore, existing perovskites have limited thermal and moisture stability in ambient environments. In order to address toxicity and stability concerns, as well as to maximize photon absorption in solar cells through bandgap optimization, this effort focuses on the development of novel leadfree perovskite materials. A cesium platinum iodide composition is selected as a model system due to the theoretical …


The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee Deberardinis May 2019

The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee Deberardinis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Introduction: The mechanical characteristics of the plantar tissues during walking is not well understood as most of the current research focuses on testing specific plantar regions in cadavers or while the feet of the participants are raised. In this work, it is hypothesized that a viscoelastic geometric ellipsoid model used to assess multiple structures of the foot would be accurate and robust. This model would be participant-specific and applicable to the entire stance phase of gait.

Methods: The proposed viscoelastic ellipsoid model would represent several key anatomical areas: Heel, Posterior Midfoot, Anterior Midfoot, Metatarsals 1-2, Metatarsals 3-5, Toe 1, Toe …


Optimization Of Useful Hard X-Ray Photochemistry, David Lewis Goldberger Dec 2018

Optimization Of Useful Hard X-Ray Photochemistry, David Lewis Goldberger

UNLV Theses, Dissertations, Professional Papers, and Capstones

X-ray induced damage is generally considered a nuisance, but in the field of Useful Hard X-ray Photochemistry we harness the highly ionizing and penetrating properties of hard X-rays (> 7 keV) to initiate novel photochemical decomposition and synthesis at ambient and extreme conditions. Preliminary experiments suggest that the energy of irradiating photons and the sample pressure play roles in determining the nature of X-ray induced damage. Here, we present the X-ray energy dependence of damage induced in strontium oxalate, strontium nitrate, and barium nitrate, as well as the pressure dependence of X-ray induced damage of strontium oxalate. Our results indicate …


Morphological And Energy Transport Optimization Of Spectrally-Selective Solar Absorber Coatings At Mesoscale, Dale Karas May 2018

Morphological And Energy Transport Optimization Of Spectrally-Selective Solar Absorber Coatings At Mesoscale, Dale Karas

UNLV Theses, Dissertations, Professional Papers, and Capstones

A special class of cuprous-based inorganic oxide materials, synthesized as nanoparticles via hydrothermal and co-precipitation methods, are portable to spectrally-selective absorber coatings with high solar-thermal energy conversion efficiency. Operating reliably at elevated temperatures when used in tandem with solar concentrators, these materials enable cost-competitive solar energy conversion technology that can be incorporated with thermal energy storage systems, supporting the viability of novel renewable power generation; notably, optimizing absorptive performance while mitigating thermal losses through re-radiated waste heat motivates sustainable energy production particular to desert climates, where water conservation and ecological sensitivity needs are paramount.

This work targets the chemical synthesis …


Preliminary Investigation Of Tensile Strength And Impact Characterization Of Cementitious Composite Incorporating Carbon Nanotubes, Robabeh Jazaei May 2018

Preliminary Investigation Of Tensile Strength And Impact Characterization Of Cementitious Composite Incorporating Carbon Nanotubes, Robabeh Jazaei

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cement has been largely used in the construction industry, specifically as a matrix for concrete. Recently, a new generation of cement-based composite that greatly increases mechanical properties is replacing conventional concrete. With periodic advances in the field, researchers considered particles with high-aspect ratios such as Carbon Nanotubes (CNTs) to reinforce cement matrices. Although there is not much literature to draw upon in research, some research on improving the tensile strength of cementitious composite incorporating with CNTs does exist. However, there had been no evidence of investigation into impact strength until this study.

Most papers presented examined the effect of multi-walled …


Numerical Study Of Oxidation In Stainless Steel Alloy Ep-823 By Liquid Lead-Bismuth Eutectic, Rajyalakshmi Palaparty May 2018

Numerical Study Of Oxidation In Stainless Steel Alloy Ep-823 By Liquid Lead-Bismuth Eutectic, Rajyalakshmi Palaparty

UNLV Theses, Dissertations, Professional Papers, and Capstones

The oxidation of stainless steel is influenced by the presence of oxygen in the surrounding medium; the oxygen reacts with the alloy to form an oxide. In certain environments, such as nuclear reactor coolant systems, minimal oxidation of the stainless steel containment functions as a protective shield from corrosive coolants such as liquid lead-bismuth eutectic.

In the current study, this minimal oxidation is evaluated for a system in which corrosion-resistant stainless steel alloy EP-823 is subject to an environment of flowing oxygenated liquid lead-bismuth eutectic at a temperature of 743 K, whereby the thickness of the forming oxide layer is …


A Novel Approach To Analyzing Strain Heterogeneity In Polycrystalline Quartz Specimens Deformed At High Pressure And Temperature, Nolan Ambrose Regis May 2018

A Novel Approach To Analyzing Strain Heterogeneity In Polycrystalline Quartz Specimens Deformed At High Pressure And Temperature, Nolan Ambrose Regis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Rheological studies of rocks and minerals allow researchers to study the grain-scale deformation mechanisms that govern large-scale geologic processes from mountain building to mantle mixing. Deforming rock samples with high pressure and temperature apparatuses similar to the Griggs piston cylinder apparatus allows us to simulate deformation at depth. However, many apparatuses are limited to “cook-and-look” analysis and require modeling techniques to determine the evolution of deformation patterns found in experimental samples. A previous study used two-dimensional finite element models to analyze the development of stress and strain patterns in polycrystalline rocks. The study suggested rhythmic patterns in deformed rocks develop …


Controlled Electrochemical Reduction Of Gold And Palladium Metal Precursors In Polyaniline, Nicole Goodwin Dec 2017

Controlled Electrochemical Reduction Of Gold And Palladium Metal Precursors In Polyaniline, Nicole Goodwin

UNLV Theses, Dissertations, Professional Papers, and Capstones

Polyaniline (PANI) has been extensively studied due to its unique electrochemical properties. The conjugated polymer is conductive with high chemical stability below 100°C, mechanical strength, and large surface area. The applications of PANI have included chemical sensing, corrosion inhibition coatings, light emitting diode and as a substrate for metal composite catalysts. Both chemical and electrochemical methods have been developed and utilized in the synthesis of PANI/metal composites. The simultaneous reduction of aniline and metal precursor produces a composite of PANI encapsulated metal, reducing the active surface area available for catalysis. Alternatively, chemical reduction of the metal precursor into preformed PANI …


Surface And Interface Characterization Of Solution-Processed Metal Oxides And Pedot:Pss Using Photoelectron Spectroscopy, Lynette M. Kogler Dec 2017

Surface And Interface Characterization Of Solution-Processed Metal Oxides And Pedot:Pss Using Photoelectron Spectroscopy, Lynette M. Kogler

UNLV Theses, Dissertations, Professional Papers, and Capstones

Solution-processed materials are appealing for use in printable electronics as a means to lower production costs, but precise control of the process is crucial for achieving the desired properties in the final materials and their interfaces. Electronic interface properties depend on both the involved materials and their fabrication processes, impacting the development and commercialization of these materials. Analyzing the chemical and electronic structure of these materials, particularly at the surfaces and interfaces, is important not only for insuring that the materials have the desired properties, but also for understanding the effects of the fabrication process and how to modify properties …


Re-Evaluation Of Acceptance Testing Criteria For Structural Masonry Using The Prism Test Method, James Bristow May 2017

Re-Evaluation Of Acceptance Testing Criteria For Structural Masonry Using The Prism Test Method, James Bristow

UNLV Theses, Dissertations, Professional Papers, and Capstones

The current acceptance criteria for structural masonry in accordance with International Building Code allows for the prism test method to be used. However, without a proper understanding of the effects of variable material properties such as individual masonry unit compressive strength and the various material moduli of elasticity, as well as the effect of field conditions on the unit’s performance, masonry prisms may “fail” to reach the design compressive strength (f’m).

By identifying causes of failure and evaluating the failure magnitude, it is concluded that when the masonry prism test method is utilized for acceptance testing of as-built masonry structures, …


High Early-Age Strength Concrete For Rapid Repair, Matthew O. Maler May 2017

High Early-Age Strength Concrete For Rapid Repair, Matthew O. Maler

UNLV Theses, Dissertations, Professional Papers, and Capstones

The aim of this research was to identify High Early-Age Strength (HES) concrete batch designs, and evaluate their suitability for use in the rapid repair of highways and bridge decks. To this end, two criteria needed to be met; a minimum compressive strength of 20.68 MPa (3000 psi) in no later than 12 hours, and a drying shrinkage of less than 0.06 % at 28 days after curing. The evaluations included both air-entrained, and non-air-entrained concretes.

The cement types chosen for this study included Type III and Type V Portland cement and “Rapid Set” − a Calcium Sulfoaluminate (CSA) cement. …


Sulfate Resistance Of Nanosilica Contained Portland Cement Mortars, Iani Batilov Batilov Dec 2016

Sulfate Resistance Of Nanosilica Contained Portland Cement Mortars, Iani Batilov Batilov

UNLV Theses, Dissertations, Professional Papers, and Capstones

Soils, sea water and ground water high in sulfates are commonly encountered hostile environments that can attack the structure of concrete via chemical and physical mechanisms which can lead to costly repairs or replacement. Sulfate attack is a slow acting deteriorative phenomenon that can result in cracking, spalling, expansion, increased permeability, paste-to-aggregate bond loss, paste softening, strength loss, and ultimately, progressive failure of concrete. In the presented research study, Portland cement (PC) mortars containing 1.5% to 6.0% nanosilica (nS) cement replacement by weight were tested for sulfate resistance through full submersion in sodium sulfate to simulate external sulfate attack. Mortars …


Alkali-Activated Natural Pozzolan/Slag Binder For Sustainable Concrete, Meysam Najimi Dec 2016

Alkali-Activated Natural Pozzolan/Slag Binder For Sustainable Concrete, Meysam Najimi

UNLV Theses, Dissertations, Professional Papers, and Capstones

This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The …


Forcing Cesium Into Higher Oxidation States Via Useful Hard X-Ray Induced Chemistry At Extreme Conditions, Daniel Thomas Sneed Aug 2016

Forcing Cesium Into Higher Oxidation States Via Useful Hard X-Ray Induced Chemistry At Extreme Conditions, Daniel Thomas Sneed

UNLV Theses, Dissertations, Professional Papers, and Capstones

Recent theoretical work published in Nature Chemistry postulates the existence of cesium in high oxidation states when bonding with fluorine. It is thus predicted to behave as a p-block element (such as xenon) at pressures above 5 GPa. At these pressures, fluorine atoms may bond with the inner p-shell electrons forming CsFn, where n may vary from 2 up to 6; thus the oxidation state of Cs may change up to 6+. My research focused on physically synthesizing these compounds and to verify that, given the right conditions, bonding doesn't only occur with valence electrons, but with the inner p-shell …


High-Pressure Properties Of Several Narrow Bandgap Semiconductors From First-Principles Calculations, Andrew Michael Alvarado May 2016

High-Pressure Properties Of Several Narrow Bandgap Semiconductors From First-Principles Calculations, Andrew Michael Alvarado

UNLV Theses, Dissertations, Professional Papers, and Capstones

The electronic, thermodynamic, and structural properties of three semiconducting materials, ZnO, InN, and PbS, at high pressure are investigated utilizing first-principles calculations based on density function theory. The first two systems, ZnO and InN, crystalize as hexagonal structures at ambient conditions and transition to a cubic structure at higher pressures. The last system, PbS, is cubic at ambient conditions, but transitions to an orthorhombic structure at higher pressure. At ambient conditions, these materials are well known semiconductors with vast amount of research and a variety of wide ranging applications in electrical devices. However, there is a lack of understanding of …


Impedance Spectroscopy Studies Of Yttria Stabilized Zirconia Under Extreme Conditions, Quinlan Blaine Smith May 2016

Impedance Spectroscopy Studies Of Yttria Stabilized Zirconia Under Extreme Conditions, Quinlan Blaine Smith

UNLV Theses, Dissertations, Professional Papers, and Capstones

Yttria Stabilized Zirconia (YSZ) is of interest for many industries. Varying amounts of Yttria (Y2O3) can be doped into Zirconia (ZrO2) to create materials with specific characteristics. For instance, 3mol% YSZ (3YSZ) is known to be a super hard material and is used as a coating on drill tips and as an abrasive. Eight mol% YSZ (8YSZ) is commonly used as a solid electrolyte in Solid Oxide Fuel Cells because of its good ionic conducting abilities and stability at high temperatures. In this thesis project, a novel experimental setup was created and used to study the ionic conductivity of (3 …


Effect Of Thermal Treatment On High Temperature Deformation Of Alloy Ep-~823, Martin Milburn Lewis May 2016

Effect Of Thermal Treatment On High Temperature Deformation Of Alloy Ep-~823, Martin Milburn Lewis

UNLV Theses, Dissertations, Professional Papers, and Capstones

The objective of this research topic is to determine mechanical properties of Alloy EP-823 and to provide a mechanistic understanding of its sensitivity to both thermal treatment and performance temperature. EP-823 is a leading target material for accelerator-driven waste transmutation applications. Overall, the tensile test results of Alloy EP-823 indicated a general trend of decreasing mechanical performance with an increase in tempering time. An increase in tempering time had a statistically significant inverse relationship with ultimate tensile strength (UTS) and yield strength (YS). An increase in tempering time did not have a significant effect on elongation and reduction in area. …


Chemical And Electronic Structure Of Surfaces And Interfaces In Cadmium Telluride Based Photovoltaic Devices, Douglas Arthur Duncan Dec 2015

Chemical And Electronic Structure Of Surfaces And Interfaces In Cadmium Telluride Based Photovoltaic Devices, Douglas Arthur Duncan

UNLV Theses, Dissertations, Professional Papers, and Capstones

The surface and interface properties are of the upmost importance in the understanding, optimization, and application for photovoltaic devices. Often the chemical, electronic, and morphological properties of the films are empirically optimized, however when progress slows, a fundamental understanding of these properties can lead to breakthroughs. In this work, surfaces and interfaces of solar cell-relevant films are probed with a repertoire of X-ray analytical and microanalysis techniques including X-ray photoelectron (XPS), X-ray excited Auger electron (XAES), X-ray emission (XES) spectroscopies, and atomic force (AFM) and scanning electron (SEM) microscopies.

Silicon-based devices currently dominate the solar market, which is rather inflexible …


The Influence Of Iron On Arctic Thule Migration Patterns, Alina T. Aquino Dec 2015

The Influence Of Iron On Arctic Thule Migration Patterns, Alina T. Aquino

UNLV Theses, Dissertations, Professional Papers, and Capstones

Arctic scholars have yet to fully understand the reasons behind the migration of Thule culture from the western to the eastern Arctic. This rapid movement across such a vast area into environmentally diverse regions marks a critical period of cultural change that is usually summarized by two theoretical positions. Ecological theories postulated environmental changes placed selective pressures on traditional food sources that required Thule hunters to follow migrating prey. Theories that focused on material acquisition alternately proposed the Thule followed the trail of meteoric iron eastward into northwestern Greenland.

This research sought to examine the eastward Thule migration from another …


An Approach To Model Plastic Deformation Of Metallic Plates In Hypervelocity Impact Experiments, Shawoon Kumar Roy Dec 2015

An Approach To Model Plastic Deformation Of Metallic Plates In Hypervelocity Impact Experiments, Shawoon Kumar Roy

UNLV Theses, Dissertations, Professional Papers, and Capstones

Space structures are subjected to micro-meteorite impact at extremely high velocities of several kilometers per second. Similarly, design of military equipment requires understanding of material behavior under extremely high pressure and temperature. Study of material behavior under hypervelocity impact (HVI) poses many challenges since few researchers so far have approached this problem. Material models, equations of the state, and fracture mechanics are not well understood under these conditions.

The objective of this research is to present an approach for studying plastic deformation of metallic plates under HVI conditions. A two-stage light gas gun can be used to simulate these conditions …


Crystalline Phase Change In Steel Alloys Due To High Speed Impact, Muna Slewa Dec 2015

Crystalline Phase Change In Steel Alloys Due To High Speed Impact, Muna Slewa

UNLV Theses, Dissertations, Professional Papers, and Capstones

The effect of hypervelocity projectile impact on the crystalline grain structure near the target impact location of A36 steel has been studied. A36 steel is a mostly single phase body centered cubic material (BCC). Impact velocities ranged from 3.54 to 6.70 km/sec. Target materials were studied before and after impact to determine if these impact conditions result in a phase change of the A36. Scanning electron microscopy, electron back-scatter diffraction, and x-ray diffraction methods were used to investigate deformation, lattice defects, twinning, and phase transformation. A limited number of impacted targets made from 304L and HY100 steels were also examined. …